Levels of Dissolved Solids Associated with Aquatic Life Effects in Headwater Streams of Virginia's Central Appalachian Coalfield Region

Prepared for Virginia Department of Environmental Quality Virginia Department of Mines, Minerals, and Energy Powell River Project

> Prepared by Virginia Tech Blacksburg, VA

> > April 2011

ACKNOWLEDGEMENTS

This research was sponsored by Virginia Department of Environmental Quality, Virginia Department of Mines, Minerals, and Energy, and Powell River Project.

Finding and accessing high-quality study sites was made possible with assistance from numerous mine operators and their consultants, as well as private landowners. They are: Eddie Clapp and Roger Jones, Red River Coal Company; Mark Sproles, Dickenson-Russell Coal Company; Tad Nunley, United Coal Company; Phil Mullins, Skelly & Loy, Inc.; Keith Mohn, Arch Coal, Inc.; Chris Stanley and Dean Childress, Clintwood-Elkhorn Mining Company; Craig Kaderavek, The Forestland Group, LLC; Marty Large, Marty Corp.

Authors:

Anthony Timpano, Virginia Water Resources Research Center, Virginia Tech Dr. Stephen Schoenholtz, Virginia Water Resources Research Center, Virginia Tech Dr. Carl Zipper, Crop and Soil Environmental Sciences, Virginia Tech Dr. David Soucek, Illinois Natural History Survey, Univ. of Illinois at Urbana-Champaign

TABLE OF CONTENTS

ACKNOWLED	GEMENTS	II
TABLE OF CO	NTENTS	ш
LIST OF FIGU	RES	VI
LIST OF TABI	LESV	ш
LIST OF ABBI	REVIATIONS	. X
EXECUTIVE S	UMMARY	XI
1.0 INTRO	DDUCTION	1
1.1 Bac	kground	. 1
1.2 Pro	blem Statement & Need for Research	. 1
1.3 Res	earch Observations, Questions, and Objectives	. 2
1.3.1	Observations	. 2
1.3.2	Research Questions	. 2
1.3.3	Objectives	. 3
2.0 METH	IODS	.4
2.1 Cor	iceptual Approach	.4
2.2 Site	Selection	. 4
2.3 Fiel	d Methods	. 6
2.4 Lab	oratory Methods	. 6
2.5 Fan	nily-Level Data Analysis	. 6
2.5.1	Virginia Stream Condition Index	. 6
2.5.2	Statistical Analyses	. 7
2.5.3	Defining Probabilities of Biotic-Effect Occurrence	. 8
2.6 Ger	us-Level Data Analysis	. 9
2.6.1	Statistical Analyses	. 9
2.6.2	Biological Data Filters	. 9
2.6.3	Field Sensitivity Distribution	10
2.6.4	Maximum Field Concentration	10
2.6.5	Field Sensitivity Distribution and Observed Effect Concentration	10
2.6.6	Seasonal Models	10
3.0 SITE :	SELECTION, HABITAT, AND WATER CHEMISTRY	12
3.1 Site	Selection	12
3.2 Hat	pitat	14
3.3 Site	Selection for Minimizing Influence of Non-TDS Stressors	15
3.4 Stre	amwater Chemistry	15
3.4.1	Physicochemical Properties	15
3.4.2	Major Ions and Trace Metals	15

3.	4.3	Ionic Composition	16
3.	4.4	Temporal Variability of TDS	17
3.	4.5	Inter-site Variability of TDS Level and Ionic Composition	
3.	4.6	Correlations between Chemical Parameters	19
4.0	Fami	LV-LEVEL ANALYSIS: VASCI ASSOCIATIONS WITH TDS	
4.1	VA	SCI Metrics	21
4.2	Coi	relations between VASCI Metrics and TDS. SC. and $SO_4^{2^2}$	
4.3	Sea	sonality of VASCI Scores	
4.4	Ass	ociations between VASCI Score and Dissolved Solids	
4.	4.1	Ordinary Least Squares Linear Regression with Mixed Effects	
4.	4.2	Ouantile Regression	
4.5	Ob	served Effect Concentrations	
4.6	Dis	cussion	
4.	6.1	Ionic Composition of TDS	
4.	6.2	Seasonality of VASCI Scores	
4.	6.3	Variability of TDS	
4.	6.4	Variability of VASCI-TDS Associations	30
4.	6.5	Comparisons with Other Studies	30
4.	6.6	Determination of TDS Levels Associated with Aquatic Life Effects	
4.	6.7	Limitations of Data Interpretation	
4.7	Co	nclusions	
5.0	Geni	JS-LEVEL ANALYSIS: FIELD SENSITIVITY DISTRIBUTIONS	
5.1	Ber	thic Macroinvertebrate Taxa	
5.2	Ma	ximum Field Concentrations	
5.3	Fie	ld Sensitivity Distributions	
5.4	Ob	served Effect Concentrations	
5.5	Sal	t Sensitivity by Taxonomic Group	
5.6	D1s	cussion	
5.	6.1	Water Chemistry	
5.	6.2	Benthic Macroinvertebrate Taxa Observed	
5.	6.3	Maximum Field Concentrations	
5.	6.4	Field Sensitivity Distributions	
5.	.6.5	Observed Effect Concentrations	
5.	6.6	Seasonal Models	
5.	.6./	Maximum Field Concentration vs. Toxicity	
٦. ح	6.8	Salt-Sensitivity by Taxonomic Group	
٦. ح	0.9	Variability of TDS	
). 5.	0.10	Interpreting Kesuits	
5.7	Coi	1Clusions	
6.0	SUMM	AARY AND CONCLUSIONS	47
6.1	Sur	nmary	
6.2	Co	clusions	
7.0	LITE	RATURE CITED	51

APPENDIX A – RBP HABITAT ASSESSMENT SCORES	A-1
APPENDIX B – STREAMWATER CHEMISTRY DATA	B-1
APPENDIX C – FAMILY-LEVEL BENTHIC MACROINVERTEBRATE DATA	C-1
APPENDIX D – GENUS-LEVEL BENTHIC MACROINVERTEBRATE DATA	D-1
APPENDIX E – VASCI METRICS AND SCORES	E-1

LIST OF FIGURES

Figure 3.1. Map of visited and selected reference and test site locations in southwestern Virginia.
Figure 3.2. Box plot of mean total habitat scores for reference sites and test sites. Mean total habitat scores were not significantly different between site types. Box plots represent 5 th , 25 th , 50 th , 75 th , and 95 th percentiles
Figure 3.3. Mean relative ionic composition by mass of total dissolved solids for a) reference sites and b) test sites
Figure 3.4. Box plots of total dissolved solids (TDS) at a) reference sites and b) test sites by sample season
Figure 3.5. Stacked ion concentrations (means) for reference sites and Laurel Fork (LAU) 19
Figure 3.6. Stacked ion concentrations (means) for test sites
Figure 4.1. Box plot of a) reference site and b) test site Virginia Stream Condition Index (VASCI) scores by season (Reference: Fall $n = 6$, Spring $n = 9$, $p = 0.03$; Test: Fall $n = 26$, Spring $n = 37$, $p = 0.0008$)
Figure 4.2. Box plot of site-paired seasonal Virginia stream condition index (VASCI) score differences (Spring minus prior Fall) for consecutive fall-spring sample pairs, by site type (Ref n = 6 site pairs, Test n = 26 site pairs)
Figure 4.3. Ordinary least squares regression plot of Virginia stream condition index (VASCI) score versus log-transformed total dissolved solids (TDS) with sample season as random effect. The fitted lines for each season and All-Year are shown, along with observed values for Fall samples (solid circles) and Spring samples (open circles). $r^2 = 0.475$, p < 0.0001 for the All-Year model
Figure 4.4. Quantile regression fitted lines of Virginia stream condition index (VASCI) versus total dissolved solids (TDS) (log transformed) for 10 th , 25 th , 50 th , 75 th , and 90 th quantiles, along with observed values (open circles). All models shown except the 90 th quantile are significant. 26
Figure 4.5. Biological effect (VASCI < 60) probability at each observed effect concentration (OEC) for total dissolved solids (TDS). The OECs from three seasonal ordinary least squares (OLS) linear regression models (squares) and four quantiles of the Quantile Regression model (circles) are shown, along with OEC bounds (Xs) from measured TDS. Relative certainty surrounding each point is ordered as follows: observed values > OLS models ~ Q50 > Q25 ~ Q75 > Q10
Figure 5.1. Field sensitivity distributions for total dissolved solids (TDS) for three seasonal models

Figure 5.2. Plot of All-Year cumulative distribution functions for total dissolved solids (TDS)	
maximum field concentrations (MFCs) by taxonomic order for the four most abundant	
taxonomic orders	41
Figure 5.3. Plots of All-Year cumulative distribution functions of total dissolved solids	
maximum field concentrations (MFCs) with taxa names.	42

LIST OF TABLES

Table 2.1. Abiotic criteria for stream selection
Table 2.2. Virginia Stream Condition Index metric descriptions. 7
Table 3.1. Site selection summary. 12
Table 3.2. Study site information
Table 3.3. Site mean habitat summary data for study sites
Table 3.4. Physicochemical summary statistics for study sites. 15
Table 3.5. Total dissolved solids (TDS) and major ion summary statistics for study sites
Table 3.6. Trace metals summary data for study sites. 16
Table 3.7. Relative ionic composition comparison between reference and test sites. 17
Table 3.8. Matrix of significant Spearman correlations for major ions, total dissolved solids, specific conductance, and Virginia Stream Condition Index scores of test sites ¹
Table 4.1. Virginia Stream Condition Index raw metrics and score summary for study sites 21
Table 4.2. Matrix of significant Spearman correlation coefficients between Virginia Stream Condition Index metrics and selected water quality measures. ¹ 21
Table 4.3. Ordinary least squares regression coefficients and r^2 values for All-Year linear model Virginia stream condition index = $\beta_0 + \beta_1[\ln(x)] + \varepsilon$, where x = water quality measure. ¹
Table 4.4. Observed effect concentrations for specific conductance, total dissolved solids, and SO_4^{2-} , estimated using ordinary least squares regression
Table 4.5. Quantile regression coefficients for linear equation [Virginia Stream Condition Index score] _Q = $\beta_0 + \beta_1[\ln(x_Q)] + \epsilon$
Table 4.6. Observed effect concentrations for specific conductance, total dissolved solids, and SO_4^{2-} using quantile regression
Table 4.7. Observed effect concentration found to be associated with probabilities of biological effect. 27
Table 5.1. Taxa sampled by season and site type. 34
Table 5.2. Maximum field concentrations (MFC) for specific conductance (SC) using three seasonal models. 36

Table 5.3. Maximum Field Concentrations (MFC) for total dissolved solids (TDS) using three seasonal models.	37
Table 5.4. Maximum Field Concentrations (MFC) for SO_4^{2-} using three seasonal models	38
Table 5.5. Observed effect concentrations for each water quality parameter and model	40
Table 5.6. Sensitivity of observed effect concentration to minimum number of taxa included in field sensitivity distributions.	1 45

LIST OF ABBREVIATIONS

AMD	Acid Mine Drainage
ANOVA	Analysis of Variance
CCC	Criteria Continuous Concentration
CDF	Cumulative Distribution Function
CWA	Clean Water Act
DO	Dissolved Oxygen
EDAS	Ecological Data Application System
EPT	Ephemeroptera, Plecoptera, Trichoptera
FSD	Field Sensitivity Distribution
HBI	Hilsenhoff Biotic Index
ICP-OES	Inductively Coupled Plasma - Optical Emission Spectrometer
IEPA	Illinois Environmental Protection Agency
MDL	Method Detection Limit
MFC	Maximum Field Concentration
MFD	Maximum Field Distribution
OEC/OEC _X	Observed Effect Concentration/Observed Effect Concentration to X% of Taxa
OLS	Ordinary Least Squares
RBP	Rapid Bioassessment Protocols
SC	Specific Conductance
SD	Standard Deviation
SSD	Species Sensitivity Distribution
TDS	Total Dissolved Solids
TMDL	Total Maximum Daily Load
USEPA	U.S. Environmental Protection Agency
VAC	Virginia Administrative Code
VASCI	Virginia Stream Condition Index
VDEQ	Virginia Department of Environmental Quality
VDMME	Virginia Department of Mines, Minerals, and Energy
WVSCI	West Virginia Stream Condition Index

EXECUTIVE SUMMARY

Recent studies have found that benthic macroinvertebrate communities in streams below Appalachian surface coal mines often differ from communities found in non-mined ecosystems. Elevated levels of total dissolved solids (TDS) have been suggested as stressors to aquatic life in Central Appalachian streams influenced by coal mining. In studies of such streams conducted to date, both non-TDS stressors and elevated TDS have been present as potential influences on biota. Research reported here was conducted to characterize the biotic response to elevated TDS by surveying first- and second-order headwater streams within Virginia's Central Appalachian coalfield region (U.S. Environmental Protection Agency Ecoregion 69), where TDS was elevated, but where non-TDS stressors were minimized.

This study evaluated associations between TDS and biological condition using familyand genus-level benthic macroinvertebrate data. Levels of TDS that were associated with biological effects were identified using the Virginia Stream Condition Index (VASCI), a family-level multimetric index of benthic macroinvertebrate community composition that is used for Clean Water Act enforcement in Virginia's non-coastal streams. In addition, a field sensitivity distribution (FSD) approach used genus-level benthic macroinvertebrate field data to determine maximum observed concentrations of TDS associated with absence of specific proportions of taxa from reference sites.

Six reference sites were selected that represented minimally disturbed conditions in the study region. Twenty-two test sites were selected for study that had elevated TDS, where non-TDS factors were of reference-quality, with no detectable influence from poor habitat quality, toxic trace metals, or land disturbances other than mining. Benthic macroinvertebrate samples were collected during the Spring (March through May) of 2009 and 2010, and Fall (September through November) of 2008 and 2009 using Virginia Department of Environmental Quality's single-habitat (riffle-run) rapid bioassessment approach. Water samples were collected during biological sampling and were analyzed for specific conductance, TDS, alkalinity/HCO₃⁻, dissolved SO₄²⁻, Cl⁻, Ca²⁺, Mg²⁺, K⁺, Na⁺, and dissolved Al, Cu, Fe, Mn, Se, and Zn.

Mean relative ionic composition of streamwater at reference sites was dominated on a mass basis by HCO_3^- (43%) and $SO_4^{2^-}$ (26%), whereas streamwater at test sites was dominated by $SO_4^{2^-}$ (46%) and HCO_3^- (27%). Family-level biological effects, as defined by VASCI scores indicating stressed or severely stressed conditions, were observed with increasing probability from 0% at TDS \leq 190 mg/L to 100% at TDS \geq 1,108 mg/L, with 50% probability of effects observed at TDS=422 mg/L. Effect probabilities of 0, 50, and 100% were associated with specific conductance values of \leq 332, 625, and \geq 1,366 μ S/cm, respectively. Sulfate concentrations of \leq 70, 219, and \geq 849 mg/L were associated with 0, 50, and 100% probabilities of effect, respectively.

Genus-level analysis using the FSD approach indicated TDS from 411 to 281 mg/L were associated with observance of 80 to 95% of reference site taxa, respectively. Specific conductance levels from 647 to 465 μ S/cm were associated with observance of 80 to 95% of taxa, respectively. Sulfate concentrations from 250 to 160 mg/L were associated with observance of 80 to 95% of taxa, respectively.

These results support use of any of the water quality measures of TDS, specific conductance, or SO_4^{2-} as water quality indicators for aquatic life effects. However, associations between these water quality measures and biological condition were variable. It is not evident from the data whether the biological condition observed was the result of concurrent water quality or whether organisms were influenced by higher levels of dissolved solids at some time prior to sampling, potentially during more-sensitive early life stages. More-frequent water quality monitoring will be employed in future research studies to answer this question.

1.0 INTRODUCTION

1.1 Background

Elevated levels of total dissolved solids (TDS) have been suggested as stressors to aquatic life in Central Appalachian streams influenced by coal mining (*e.g.*, Pond et al. 2008, Pond 2004, Green et al. 2000). In coalfield streams, TDS is most often dominated on a mass basis by the dissolved anions SO_4^{2-} and HCO_3^- , with elevated concentrations (relative to reference streams) of Ca^{2+} , Mg^{2+} , Na^+ , K^+ , and Cl^- also common (Pond et al. 2008, Mount et al. 1997). At present there are no aquatic life water quality criteria for TDS/ions in the primary coal-producing Central Appalachian states (KY, VA, WV). In these states, aquatic life conditions are assessed for Clean Water Act compliance using measures of benthic macroinvertebrate community composition (*e.g.*, VDEQ 2010).

In mine-influenced streams of the Central Appalachians, in-stream TDS concentration can exceed 2,000 mg/L, whereas background levels are generally < 200 mg/L (Pond et al. 2008). Dissolved ions such as SO₄²⁻ have been shown to cause lethal and sublethal effects to a variety of freshwater invertebrates in laboratory toxicity testing (Soucek and Kennedy 2005, Kennedy et al. 2003). Laboratory bioassays illustrate a clear biological response to elevated TDS, though results differ among studies, suggesting that TDS tolerance varies widely among different test organisms.

Field data have shown that the biotic response to elevated TDS also occurs outside the laboratory with indigenous species. Recent studies of Appalachian coalfield streams have found that benthic macroinvertebrate community composition is altered in coal mining-influenced streams relative to communities in streams uninfluenced by mining (*e.g.*, Pond et al. 2008, Pond 2004, Green et al. 2000). In those studies, most mining-influenced streams had elevated specific conductance/TDS and in all cases one of those water quality parameters was significantly and strongly correlated with biotic community composition change.

Although field studies have succeeded in demonstrating the ability of benthic macroinvertebrate monitoring to identify aquatic community responses to coal mining activity, much remains unknown about how benthic macroinvertebrate communities respond to specific TDS concentrations and compositions in the absence of non-TDS stressors that are often concurrent with elevated TDS levels in mining-influenced streams.

1.2 Problem Statement & Need for Research

During the period 1992-2002, coal mining and related activities affected > 1,900 km of Appalachian headwater streams with "...an increase of minerals in the water as well as less diverse and more pollutant-tolerant macroinvertebrates and fish species."(USEPA 2005). The potential for impact to aquatic life from elevated TDS may prompt regulatory agencies to develop water quality criteria to protect aquatic life in mining-influenced streams. To do so, policy makers must have knowledge of how biota respond to the pollutant to be regulated.

The toxic effects of some mining-related dissolved salts are well-understood from laboratory experiments with indicator organisms, and it has been shown that resident biota are affected in

streams influenced by mining activities, but it is unclear how communities respond specifically to $SO_4^{2^2}$ - and HCO_3^{-} -dominated salt solutions (with Ca^{2+} as dominant cation) *in situ* in mining-influenced streams. Recent research has focused on showing that mining affects biota (Pond 2004) and how new bioassessment tools can detect mining-related effects on aquatic biota (Pond et al. 2008). A review of the primary literature reveals that to date, no field studies have been designed specifically to identify the biological effects of TDS by isolating the TDS effect through deliberate selection of study sites where non-TDS stressors are minimized.

1.3 Research Observations, Questions, and Objectives

1.3.1 Observations

As characterized using a benthic macroinvertebrate multimetric index, biological condition in Central Appalachian streams draining land disturbed by coal mining is often different from reference condition (Pond 2004, Howard et al. 2001, Green et al. 2000). Virginia benthic macroinvertebrate community index scores are often lower than reference values where concentrations of dissolved solids are elevated. In numerous datasets from various Central Appalachian mined lands, elevated dissolved solids (either as measured or as represented using the surrogate of specific conductance) are strongly and consistently correlated with decreased stream biological condition (Merricks 2007, Pond 2004, Chambers and Messinger 2001).

1.3.2 Research Questions

The goal of this research is to determine levels of TDS (or its surrogates/constituent ions) that are associated with aquatic life effects by defining associations between benthic macroinvertebrate community composition and TDS and related measures in headwater streams of Virginia's Central Appalachian coalfield where non-TDS stressors are minimized.

With the study site population constrained to headwater streams of Virginia's Central Appalachian coalfield region, the following research questions were addressed:

- 1) Can streams be identified where non-TDS stressors are minimized such that the influence of dissolved solids on biological condition can be more accurately determined?
- 2) Is there an association between benthic macroinvertebrate community composition and TDS/component ion/specific conductance level?
- 3) What is the ionic composition of TDS in this study region?
- 4) Does the ionic composition of TDS influence the association between TDS/component ion/specific conductance and benthic macroinvertebrate community composition?
- 5) What level of TDS/component ion/specific conductance is associated with benthic macroinvertebrate community composition effects as defined by VASCI score < 60?

6) What TDS/component ion/specific conductance levels are associated with absence of benthic macroinvertebrate genera using a taxa sensitivity distribution approach with field data?

1.3.3 Objectives

This research had the following three objectives for accomplishing the overall goal:

- 1) Effectively isolate the influence of dissolved solids by finding study sites in streams where non-TDS stressors are minimized.
- 2) Determine which measure of dissolved solids, be it TDS, specific conductance, or ions/ion combinations, is most strongly associated with biological condition.
- 3) Define levels of selected water quality measures that are associated with effects to aquatic life, using family- and genus-level benthic macroinvertebrate data.

The research objectives have been addressed using two analytical approaches. Section 4 describes the approach of using Virginia's Stream Condition Index (VASCI), a family-level multimetric index of benthic macroinvertebrate community integrity, to determine levels of dissolved solids associated with biological effects in a regulatory context. Section 5 describes the second approach, which calculated levels of dissolved solids associated with observance of most taxa by using genus-level field data applied to a taxa sensitivity distribution method of developing water quality criteria. Research methods are described in Section 2, with site selection, habitat assessment, and water chemistry results in Section 3. Section 6 summarizes and integrates results of the two analytical approaches.

2.0 METHODS

2.1 Conceptual Approach

This study was designed to quantify associations between benthic macroinvertebrate community composition and in-stream concentrations of TDS. Given that many factors influence the condition of aquatic life, this study sought to focus analysis on a single factor by selecting streams that varied primarily by TDS concentration, while minimizing confounding factors that might influence biota. This was accomplished by seeking study streams with attributes such as habitat quality that were as similar as possible to minimally-disturbed reference streams of the region. The design was intended to ensure that TDS, including its component ions, was the primary factor associated with biotic stress in these streams. Factor-effect levels were studied by examining streams with mining-origin TDS concentrations that exceeded reference stream concentration and spanning a range of TDS levels (test streams). The response factor was benthic macroinvertebrate community composition, which was characterized using a family-level multimetric index of benthic macroinvertebrate community composition, as well as individual genus richness measures. Reference streams (i.e., streams that are minimally disturbed by anthropogenic influences) were also identified and studied.

Reference stream data were used for several purposes. They were used to ensure that test site habitat quality was comparable to that of reference sites. In addition, they were used to establish genera that were expected to occur at minimally disturbed sites in the region so that their presence or absence could be documented at test sites where TDS was elevated.

2.2 Site Selection

The goal in choosing test sites was to identify streams with elevated TDS, but where all other observable factors were comparable to reference streams that represent "...the biological condition in places with a minimal amount of human disturbance." (USEPA 2006).

First- and second-order streams (Strahler 1957) within the Virginia portion of Ecoregion 69 (Omernik 1987) were selected for possible study. Efforts were made to locate elevated TDS, or "test" sites, meeting non-biological reference criteria (Table 2.1) used for Virginia Clean Water Act implementation studies (Burton and Gerritsen 2003, VDEQ 2006a).

Streams were chosen by examining a variety of available data using a GIS, augmented by consultation with mine operators, consultants, and regulators with specific knowledge of stream conditions within the study area. Virginia Department of Mines, Minerals and Energy provided data on water quality, mine permits, and historical surface-mining site locations.

Candidate sites were visited to assess suitability for study. Site reconnaissance allowed verification of current land uses and confirmed minimal catchment disturbance, as per study design. Physicochemical water parameters, including pH and specific conductance, were measured. Physical habitat was evaluated using the qualitative visual estimate approach for high-

gradient streams as specified in U.S. EPA's Rapid Bioassessment Protocols (RBP) (Barbour et al. 1999).

Because of the effort and time required to find suitable sites, selection continued throughout the two-year study period in order to maximize the number of sites surveyed. Each site was sampled in every season starting from time of selection through the end of the study period. The first season's sampling (Fall 2008) included eight sites (3 reference, 5 test). Spring 2009 sampling included 20 sites (3 reference, 17 test). Fall 2009 sampling added five more sites for 25 total (3 reference, 22 test). The final sampling in Spring 2010 included 28 sites (6 reference, 22 test).

The 22 suitable test sites selected met non-biological reference criteria commonly used for studies of Virginia non-coastal streams (Burton and Gerritsen 2003), excepting reference criteria concerning conductivity (Table 2.1). This was done to select streams with non-TDS abiotic factors of high-quality and as similar as possible among sites. Test sites meeting these criteria were selected within a range of TDS levels of ~200 to 2,000 mg/L, a range commonly associated with mine-influenced streams of the Central Appalachian coalfields (Pond et al. 2008).

Table 2.1. Abiotic criteria for stream selection.

Parameter or Condition (units or range)	Selection Criterion ¹			
Dissolved Oxygen (mg/L)	≥ 6.0			
pH	$\geq 6.0 \& \leq 9.0$			
Epifaunal substrate score $(0-20)^2$	≥ 11			
Channel alteration score $(0-20)^2$	≥ 11			
Sediment deposition score $(0-20)^2$	≥ 11			
Bank disruptive pressure score $(0-20)^2$	≥ 11			
Riparian vegetation zone width score, per bank $(0-10)^2$	≥ 6			
Total RBP habitat score $(0-200)^2$	≥ 120			
Residential land use immediately upstream	None			
Property owner or manager permission for access	Obtained			

1 – Parameters and numeric selection criteria from Burton and Gerritsen (2003)

2 – RBP habitat, high gradient streams (Barbour et al., 1999)

In addition to meeting the physicochemical and habitat criteria, all test sites also had to be free from obvious influence from residential land use upstream. This criterion was important to avoid the unpredictable influence of failing septic systems (*e.g.*, dissolved N and P enrichment) or direct stream discharges of household waste (*e.g.*, particulate organic matter, toxics). Other potential sources of non-point source pollution were avoided, including road crossings, bridges, culverts, active logging, non-coal industrial operations or infrastructure (e.g., railbeds), and commercial activity. Finally, accessibility was a practical criterion that had to be met to allow the site to be included in the study. Access permission was obtained for each study site from private landowners and/or mine permittees where necessary.

2.3 Field Methods

At each study site, benthic macroinvertebrate and water quality samples were collected up to four times during the study period. Samples were collected during the Spring (March through May) of 2009 and 2010, and Fall (September through November) of 2008 and 2009 biological index periods (VDEQ 2008). Benthic macroinvertebrate collections followed the single-habitat (riffle-run) approach (VDEQ 2008). Approximately 2 m² of riffle substrate were sampled using a 0.3 m wide D-frame kicknet with 500 μ m mesh. A single composite sample was collected at each site, preserved in 95% ethanol and returned to the laboratory for sorting and identification.

Water temperature, dissolved oxygen (DO), specific conductance (at 25 °C; henceforth referred to as SC), and pH were measured *in situ* with a calibrated handheld multi-probe meter (Hydrolab Quanta, Hach Hydromet, Loveland, Colorado). Single grab samples of streamwater were collected using vacuum hand pumps and reusable polyethylene filter assemblies rather than peristaltic pumps and single-use capsule filters (VDEQ 2006b). All samples were stored in acid-rinsed polypropylene Nalgene bottles. Samples for dissolved metals, TDS, alkalinity, and major ions were filtered in the field immediately following collection using acid-rinsed cellulose ester filters with a nominal pore size of 0.45μ m. Samples for metals analysis were preserved to pH < 2 with 1+1 concentrated nitric acid. All samples were collected concurrently at base flow. All water quality sampling was conducted upstream of and/or immediately prior to biological sampling.

In-stream and riparian habitat quality were assessed during each sample collection using RBP methods (Barbour et al. 1999).

2.4 Laboratory Methods

Biological sample processing followed modified VDEQ Biomonitoring SOP (VDEQ 2008). Each sample was sub-sampled to 110 and 200 organisms (\pm 10%) following RBP methods (Barbour et al. 1999). Benthic macroinvertebrates were identified to the genus/lowest practicable taxonomic level. Family-level analyses used 110 organism sub-samples and genus-level analyses use 200 organism sub-samples.

An inductively coupled plasma - optical emission spectrometer (Varian Vista MPX ICP-OES w/ICP Expert software, Varian Instruments, Walnut Creek, California) was used to measure dissolved Ca^{2+} , Mg^{2+} , K^+ , Na^+ , and all species of Cu, Zn, Mn, Se, Al, and Fe ions (APHA 2005). An ion chromatograph (Dionex DX500, Dionex Corp., Sunnyvale, California) was used to measure Cl⁻ and SO₄²⁻ (APHA 2005); TDS was measured via filtration of known volumes followed by drying at 180°C (APHA 2005), with modifications (0.45 micron cellulose ester filter, field filtration); total alkalinity was measured for an aliquot of filtered sample by titration with standard acid (APHA 2005); and $CO_3^{2^-}/HCO_3^{-}$ were calculated from alkalinity and pH measurements (APHA 2005). Samples were stored at 4 °C and analyzed within holding times of 7 days (TDS), 14 days (alkalinity), 28 days (anions), or 6 months (metals) (APHA 2005).

2.5 Family-Level Data Analysis

2.5.1 Virginia Stream Condition Index

The Virginia Stream Condition Index (VASCI) is a multimetric index of benthic macroinvertebrate community composition used to evaluate biological condition of non-coastal

streams in Virginia (Burton and Gerritsen 2003, VDEQ 2006a). Using family-level taxonomic data, streams are scored from 0 to 100 relative to a reference condition with 100 being most comparable to reference. For purposes of aquatic life designated use attainment assessment in Virginia, streams with VASCI scores < 60 are considered impaired and streams scoring \geq 60 are considered unimpaired (VDEQ 2010a).

The VASCI is comprised of eight family-level metrics of benthic macroinvertebrate community composition. The metrics quantify an aspect of community composition, and each has an expected response to increasing catchment disturbance (Table 2.2). A "score", on a 0-100 scale, is assigned for each metric based on each metric's measured value relative to the reference value for that metric (Burton and Gerritsen 2003), and the VASCI is calculated by averaging scores of the eight metrics.

Taxonomic data were entered into VDEQ's Ecological Data Application System (EDAS) relational database (VDEQ 2010b). Biological metrics and VASCI scores were calculated using EDAS regional reference values (Burton and Gerritsen 2003).

			Expected Response
Metric	Abbr.	Description	to Increasing
		-	Disturbance
Total Taxa Richness	Total Taxa	Total number of distinct taxa	Decrease
EPT Taxa Richness	EPT Taxa	Total number of distinct families in the orders Ephemeroptera, Plecoptera, and Trichoptera (mayflies, stoneflies, and caddisflies)	Decrease
Percent Ephemeroptera	% E	Relative abundance of individuals in the order Ephemeroptera	Decrease
Percent Plecoptera and Trichoptera less Hydropsychidae	% PT-H	Relative abundance of individuals in the orders Plecoptera and Trichoptera, with individuals from the generally tolerant Trichoptera family Hydropsychidae excluded	Decrease
Percent Scrapers	% Scrap	Relative abundance of individuals in the functional feeding group Scrapers, which obtain their food by scraping biofilms from solid surfaces	Decrease
Percent Chironomidae	% Chiron	Relative abundance of individuals in the family Chironomidae	Increase
Percent Two Dominant Taxa	% 2 Dom	Summed relative abundance of the two taxa with the greatest number of individuals	Increase
Hilsenhoff Biotic Index	HBI	Organic pollution tolerance index; lower values indicate lower pollution tolerance	Increase

Table 2.2. Virginia Stream Condition Index metric descriptions.

2.5.2 Statistical Analyses

Study sites were divided into two groups: reference sites and test sites. Reference sites were selected for study because their watersheds are minimally disturbed, whereas test sites are characterized by watershed disturbances that have produced elevated TDS, as documented during site selection, but are otherwise comparable to reference. Both site types were included in basic data comparisons. Only test sites were used for regression analyses.

Water quality, habitat, and biotic measures were compared between site categories using Welch's t-test and Mann-Whitney U test for normal and non-normal data, respectively. Correlations among water quality parameters, biotic metrics, and VASCI scores were analyzed using the non-parametric Spearman rank correlation procedure.

Analyses were conducted to test for associations between water quality and biological effects at test sites using ordinary least-squares (OLS) regression applied as a mixed model with VASCI score as dependent variable and sample season as a random effect. Model fit was evaluated by examining coefficients of determination (r^2) and residual diagnostic plots for normality and homoscedasticity. For each water quality parameter evaluated, a model was created for each sampling season, and an All-Year model was created by using all data. General Fall and Spring models were created by using the means of regression coefficients for each pair of sampling season models.

Quantile linear regression was conducted for test sites, again with VASCI as the dependent variable and water quality measure as the independent variable. Results were used to produce simple linear regression models for selected predictors at each of five quantiles of VASCI response. The quantile regression method was applied to these data because of the method's robustness to extremes in the dataset, its allowance for heterogeneous variance, and its ability to quantify how predictor influence on response may vary across the range of response values (Cade and Noon 2003). It is also a useful method for better understanding relationships at multiple points along the data distribution that might go unnoticed when using the mean-based OLS regression (Cade and Noon 2003).

Ordinary least squares and quantile regression analyses were conducted using transformed (natural log) values for the water quality measurements, as needed to satisfy analytical requirements.

Biotic effects were defined as VASCI scores < 60. Statistically significant associations among water quality measures and VASCI scores were applied to identify observed effect concentrations (OECs) as water quality levels associated with VASCI = 60. The term "OEC" is used despite uncertainty concerning which water quality variable(s) is/are the primary causative stressor(s); the term is intended to communicate a water-quality level that is associated with a biotic effect observance threshold from a causative stressor.

All statistical analyses were conducted using JMP 8 and SAS 9.2 (SAS Institute, Cary, North Carolina), with test level of $\alpha = 0.05$.

2.5.3 Defining Probabilities of Biotic-Effect Occurrence

Observed effect concentrations modeled using OLS and quantile regression were combined with empirical biotic-effect thresholds to produce probability profiles of biotic-effect occurrence at specific water-quality levels, with OECs derived from OLS regression assumed to correspond with 50% probability of biotic-effect occurrence.

2.6 Genus-Level Data Analysis

Water quality criteria for many pollutants other than TDS have been developed by the U.S. Environmental Protection Agency (U.S. EPA) using laboratory toxicity data, but field data are not at present used to derive water quality criteria. The established approach uses laboratory toxicity data to construct species sensitivity distributions (SSDs), which identify pollutant levels that do not cause toxic effects to most (95%) species (Stephan et al. 1985, Posthuma et al. 2002). However, the concept of using field data for criteria development is gaining interest, as evidenced by U.S. EPA's recent application of the SSD approach to field data, which was designed to determine the level of specific conductance associated with observance of 95% of reference-site benthic macroinvertebrate genera in Central Appalachian streams influenced by coal-mining (USEPA 2010).

Using field data with the SSD approach to derive criteria can have several benefits over using traditional laboratory tests. First, a wider range of organisms can be incorporated into the SSD because it is not feasible to test all species in the laboratory. Second, a field-data approach allows criteria development using data from the indigenous organisms targeted for protection, rather than the fewer, laboratory-adaptable indicator organisms used in toxicity testing. Third, field data represent effects of long-term, or life-cycle exposure to stressors – an exposure duration not easily achieved in the laboratory for all test species. These benefits support the use of field data with the SSD approach (Suter 2002). Use of field data also has disadvantages. One is the difficulty of controlling for effects by other stressors, so as to ensure that the effects being observed are those of the stressor in question. The variety of environmental factors that influence species occurrences in natural environments can also cause difficulties, especially as they affect the field distributions of sensitive and rare species.

Here the SSD concept was applied using field-based genus-level data to construct taxa sensitivity distributions that could be used to determine levels of dissolved solids that are associated with low observation frequency of benthic macroinvertebrate genera in headwater streams of Virginia's Central Appalachian coalfield region.

2.6.1 Statistical Analyses

Water quality and habitat were compared between site categories using Welch's t-test and Mann-Whitney test for normal and non-normal data, respectively. All analyses were conducted using JMP 8 (SAS Institute, Cary, North Carolina) and R 2.12 statistical software (R Development Core Team) with test level of $\alpha = 0.05$.

2.6.2 Biological Data Filters

All organisms were identified to the genus level, except Chironomidae and Oligochaeta.

Specimens in the family Chironomidae were identified to family level but Chironomidae was treated as if it were a genus for analysis. Aquatic earthworms were identified to class Oligochaeta, which was treated as a genus as well. These two taxa were not identified to lower taxonomic levels because of the specialized techniques and training required for reliable identification. They were included in analysis because they were common constituents in samples.

Although the SSD approach can be sensitive to the number of taxa included, a determination must be made as to which taxa to include in the analysis (Wheeler et al. 2002). For this study,

any genera that were not observed in at least one reference sample were excluded from analysis to ensure that the analysis represented salt-sensitive taxa that would be expected to occur at reference sites, rather than salt-tolerant taxa occurring only at TDS-influenced sites. In addition, genera observed in fewer than four samples (5% of the 81 samples) were excluded from analysis to limit influence from the rarest taxa. Because they are unlikely to appear in a sample, it is not clear whether the absence of rare taxa in a sample is due to elevated TDS or natural scarcity. For this reason, estimated salt tolerance values for rare taxa would likely be underestimated compared to salt tolerance values of more-common taxa (Kefford et al. 2004a). That is, the difference between field-based salt tolerance values and laboratory-derived salt toxicities would be greater for rare taxa than for more-common taxa (Kefford et al. 2004a). Therefore, the rarest taxa were excluded because their inclusion would limit the utility of the analysis as an indicator of TDS sensitivity.

2.6.3 Field Sensitivity Distribution

The SSD approach is applied to laboratory toxicity data to derive water quality criteria (Posthuma et al. 2002). The SSD approach was used here with genus-level field data (with noted exceptions) to derive field sensitivity distributions in order to determine levels of dissolved solids that are associated with absence of benthic macroinvertebrate taxa at study sites. This approach was called a field sensitivity distribution (FSD) and FSDs were created for SC, TDS, and $SO_4^{2^\circ}$, because those are the water quality measures found to be most highly correlated with biological condition in the study region (Timpano et al. 2010, Timpano 2011). Although the SSD approach uses species-level toxicity data (Posthuma et al. 2002), the conceptual approach translates to the use of genus-level field data, in that the focus remains on identifying stressor effect levels associated with absence of distinct taxa. Genus-level data were used because genus is a readily achievable level of taxonomic resolution for rapid bioassessment purposes (Barbour et al. 1999).

2.6.4 Maximum Field Concentration

The highest water quality parameter concentration at which a taxon was observed in a sample was defined as the Maximum Field Concentration (MFC). This is conceptually similar to the Maximum Field Distribution (MFD) approach employed by Kefford et al. (2004a) in examining salinity tolerance of freshwater benthic macroinvertebrates in Australian waters. The MFC values for each taxon were then used to construct an FSD for each water quality parameter.

2.6.5 Field Sensitivity Distribution and Observed Effect Concentration

An FSD is a cumulative distribution function (CDF) of the MFC values for a given water quality measure. The FSD curve describes the proportion of taxa with an MFC less than or equal to a given concentration. Field sensitivity distributions were constructed using R statistical software. The FSD was used to determine the water quality measure concentration above which different proportions of taxa were not observed. This was defined as the observed effect concentration – X%, or OEC_X. The CDF linear interpolation form of the quantile function in R was used to calculate the OEC_X for SC, TDS, and SO₄²⁻ for proportions of taxa were observed at study sites.

2.6.6 Seasonal Models

Maximum field concentrations, FSDs, and OEC_X values were calculated three ways based on sample seasons. One model used data from samples collected in Spring (42 taxa from 48

samples), one model used data from Fall samples (41 taxa from 33 samples), and an All-Year model used data from all samples (60 taxa from 81 samples). This was done to evaluate seasonal differences in OEC_X values. For each model's development, the individual samples were treated independently.

3.0 SITE SELECTION, HABITAT, AND WATER CHEMISTRY

3.1 Site Selection

The site selection process yielded 229 candidate sites. Of these, 185 were visited within Virginia's coalfield counties (Figure 3.1) to verify land uses, habitat quality, and water quality. Twenty-eight sites in first- and second-order headwater streams were selected for study (Tables 3.1 and 3.2). Poor habitat quality was the primary reason for not selecting streams for study. Because of the scarcity of sites satisfying selection criteria, site selection was continued and new sites were added throughout the study period (Table 3.2).

Table 3.1. Site selection summary.

	Reference	Test	Total
Candidate Sites	48	181	229
Sites Visited	36	149	185
Study Sites Selected	6	22	28

The site selection process yielded six reference sites (Figure 3.1). Three, in the Jefferson National Forest (Wise County), approached "natural" or "undisturbed" condition free from significant human disturbance, but with dominant geology different from that of the test sites (Table 3.2). Therefore, three additional reference sites were selected near the Dickenson/Buchanan County border, where dominant geology was similar to test sites. The three additional sites were distributed to nearly encompass the latitudinal extents of the coalfields (Figure 3.1). Twenty-two test sites were located that met selection criteria.

Figure 3.1. Map of visited and selected reference and test site locations in southwestern Virginia.

								Sampled			
Stream	Station ID	Туре	Order	Dominant Geologic Formation	County ¹	Lat	Long	Fall 2008	Spring 2009	Fall 2009	Spring 2010
Burns Creek	BUR	Ref	2	Lee	Wise	36.929	-82.535	Х	Х	Х	Х
Clear Creek	CLE	Ref	2	Undivided Mississippian	Wise	36.929	-82.589	Х	х	Х	х
Copperhead Branch	COP	Ref	1	Norton	Dickenson	37.064	-82.090				Х
Crooked Branch	CRO	Ref	2	Norton	Dickenson	37.130	-82.218				х
Eastland Creek	EAS	Ref	1	Undivided Mississippian	Wise	36.917	-82.593	Х	Х	Х	Х
Middle Camp Branch	MCB	Ref	1	Norton	Dickenson	37.274	-82.286				Х
Birchfield Creek	BIR	Test	2	Wise	Wise	37.036	-82.575	Х	Х	Х	Х
Callahan Creek West Fork	CAW	Test	1	Wise	Wise	36.980	-82.797		Х	Х	Х
Cane Branch	CAN	Test	1	Wise	Dickenson	37.160	-82.547			Х	Х
Fawn Branch	FAW	Test	1	Wise	Lee	36.811	-83.080		Х	Х	Х
Fryingpan Creek	FRY	Test	2	Norton	Dickenson	37.060	-82.218		Х	Х	Х
Fryingpan Creek Right Fork	RFF	Test	2	Norton	Dickenson	37.060	-82.220		х	Х	х
Gin Creek	GIN	Test	2	Wise	Lee	36.836	-83.055		Х	Х	Х
Grape Branch	GRA	Test	2	Norton	Buchanan	37.257	-82.007	Х	Х	Х	Х
Hurricane Fork	HUR	Test	2	Norton	Buchanan	37.400	-82.067		х	Х	х
Jess Fork	JES	Test	2	Wise	Buchanan	37.295	-82.219		х	Х	х
Kelly Branch	KEL	Test	2	Wise	Wise	36.935	-82.792			Х	Х
Kelly Branch UT ²	KUT	Test	1	Wise	Wise	36.936	-82.792			Х	х
Laurel Branch	LAB	Test	2	Norton	Russell	37.014	-82.205		Х	Х	Х
Laurel Fork	LAU	Test	2	Wise	Wise	36.874	-82.825		х	Х	х
Mill Branch Left Fork	MIL	Test	2	Wise	Wise	36.927	-82.747	Х	х	Х	х
Powell River	POW	Test	1	Wise	Wise	37.013	-82.697	Х	Х	Х	Х
Race Fork UT ²	RAC	Test	1	Norton	Buchanan	37.427	-82.050		х	Х	х
Richey Branch	RIC	Test	2	Wise	Wise	37.036	-82.546			Х	Х
Richey Branch UT ²	RUT	Test	1	Wise	Wise	37.037	-82.544			Х	х
Roll Pone Branch	ROL	Test	1	Norton	Russell	37.014	-82.195		х	Х	х
Spring Branch	SPR	Test	1	Norton	Buchanan	37.434	-82.046		х	Х	х
Spruce Pine Creek	SPC	Test	2	Norton	Buchanan	37.261	-81.922	Х	Х	Х	Х

Table 3.2. Study site information.

¹All sites located in southwestern Virginia; ²Unnamed Tributary

3.2 Habitat

Mean total habitat scores, 177 and 169 for reference and test sites, respectively (Figure 3.2, Table 3.3), were not significantly different (p = 0.07). All habitat parameter means were nominally lower for test sites than for reference sites (Table 3.3), with the largest nominal differences recorded for embeddedness, sediment deposition, and bank stability in that order. However, only mean riparian vegetated width scores were significantly different between reference and test sites (p = 0.0002), with reference sites scoring higher. Habitat parameters and total score were not significantly correlated to VASCI score. Water quality measures were not correlated to total score or habitat parameters, except bank stability, which was moderately correlated with TDS ($\rho = -0.36$), SC ($\rho = -0.37$), and SO₄²⁻ ($\rho = -0.46$). Test site means were > 85% of reference mean for all habitat parameters and for total score, indicating that test site habitat was comparable to reference (Barbour et al. 1999).

Figure 3.2. Box plot of mean total habitat scores for reference sites and test sites. Mean total habitat scores were not significantly different between site types. Box plots represent 5th, 25th, 50th, 75th, and 95th percentiles.

Table 3.3. Site mean habitat	summary data f	for study sites.
------------------------------	----------------	------------------

		Substrate/Cover	Embeddedness	Velocity/Depth	Sediment Dep.	Flow	Channel Alt.	Riffle Freq.	Bank Stability L+R	Bank Veg. Protection L+R	Rip. Veg. Width L+R	Total
Reference	Sites ¹											
	Mean	18.3	15.4	16.0	13.8	18.7	20.0	18.3	17.3	19.2	20.0	176.7
	SD	1.1	2.0	3.1	1.6	1.2	0.0	1.1	2.3	0.8	0.1	8.2
	Min	17	13	10	12	17	20	17	13	18	20	163
	Max	20	17	19	16	20	20	20	20	20	20	186
Test Sites ²												
	Mean	17.4	14.2	15.7	12.6	18.2	19.9	18.1	15.5	18.4	18.9*	169.0
	SD	0.8	0.9	1.2	0.7	0.9	0.2	0.8	1.8	1.0	1.0	5.4
	Min	16	12	13	11	17	19	16	11	17	17	158
	Max	19	16	19	14	20	20	19	18	20	20	178

¹Six sites; ²21 sites; *Mean is significantly different from reference ($\alpha = 0.05$).

3.3 Site Selection for Minimizing Influence of Non-TDS Stressors

Reference-quality streams with elevated TDS are rare in Virginia's Central Appalachian ecoregion because most of the region's streams are influenced by land uses including agriculture, legacy mining, contemporary mining, infrastructure, and commercial, industrial, and/or residential development. Nonetheless, the extensive effort undertaken to locate test sites with abiotic conditions comparable to those of reference sites was successful in minimizing biotic influence from non-TDS stressors, including poor habitat quality. This was an important step toward defining TDS sensitivity, because other studies of TDS and effects of related measures in Appalachian coalfield streams have found that habitat quality is often positively correlated with biotic condition (Pond et al. 2008, Pond 2004, Howard et al. 2001).

3.4 Streamwater Chemistry

3.4.1 Physicochemical Properties

Streamwater temperature, pH, DO, and SC values ranged from 1.7 to 17.5 °C, 6.11 to 8.49, 7.7 to 12.3 mg/L, and 16 to 1,670 μ S/cm, respectively across all samples (Table 3.4). Mean test site pH (7.71) and SC (593 μ S/cm) were significantly different from reference sites (pH of 7.02, and SC of 31 μ S/cm), but streamwater temperature and DO were not significantly different between reference and test sites (Table 3.4).

		Temp	pН	DO^{1}	SC^2
		°C	SU	mg/L	µS/cm
Reference Sites ³					
	Mean	11.0	7.02	9.6	31
	SD	4.0	0.45	1.1	27
	Min	1.7	6.11	7.7	16
	Max	14.4	7.80	11.8	116
Test Sites ⁴					
	Mean	12.1	7.71*	9.4	593*
	SD	3.3	0.39	0.9	349
	Min	2.5	6.57	7.8	20
	Max	17.5	8.49	12.3	1,670

Table 3.4. Physicochemical summary statistics for study sites.

¹Dissolved oxygen; ²Specific conductance; ³Six sites, 15 samples; ⁴21 sites, 63 samples; *Mean is significantly different from reference ($\alpha = 0.05$).

3.4.2 Major Ions and Trace Metals

Mean TDS and major ion concentrations at test sites were significantly higher than at reference sites (Table 3.5). Test site mean TDS was 406 mg/L, whereas reference site mean TDS was 21 mg/L (Table 3.5).

		TDS	SO4 ²⁻	HCO ₃ ⁻	Ca ²⁺	Mg ²⁺	Na^+	K ⁺	Cl
					mg	g/L			
Reference S	Sites ¹								
	Mean	21	5.9	10.8	2.6	0.8	1.2	1.5	0.6
	SD	19	5.1	10.4	2.7	0.6	0.9	1.4	0.4
	Min	5	2.8	0.7	0.4	0.5	0.4	0.4	0.3
	Max	76	22.1	44.1	12.0	2.6	3.7	5.5	1.4
Test Sites ²									
	Mean	406*	231.4*	117.6*	61.1*	36.3*	24.8*	3.5*	3.2*
	SD	284	187.2	69.7	41.4	29.7	28.0	3.4	1.5
	Min	16	4.2	5.1	1.5	1.1	0.7	0.3	0.6
	Max	1,378	849.0	301.7	183.9	160.6	135.9	15.1	7.6

Table 3.5. Total dissolved solids (TDS) and major ion summary statistics for study sites.

¹Six sites and 15 samples; ²21 sites and 63 samples; *Mean is significantly different from reference ($\alpha = 0.05$);

Median trace metal concentrations (Table 3.6) were nominally higher in test sites than in reference sites for most metals (Table 3.6). Streamwater dissolved metal concentrations were below method detection limits in 257 of 396 (65%) test site samples (Table 3.6). No measurements exceeded criteria continuous concentration (CCC) for Al, Cu, Fe, or Mn. Two of 63 samples (3.2%) exceeded hardness-adjusted CCC for Zn. Nine of 63 samples (14.3 %) exceeded CCC for Se (Table 3.6). Correlation analysis revealed no significant associations between metal concentrations > CCC and VASCI score. There was also no significant correlation between metal concentrations > CCC and the error term from the VASCI – SC OLS regression All-Year model.

		Al	Cu	Fe	Mn	Se	Zn
				μg	g/L		
Reference S	lites ¹						
	Median	< 12.6	< 17.7	< 32.3	< 6.7	< 17.1	10.9
	Max	41.9	< 22.8	< 64.9	< 15.7	< 24.1	< 37.3
	$\# > MDL^2$	7	0	1	6	6	3
	$\# > CCC^3$					3	3
Test Sites ⁴							
	Median	11.9	< 17.7	60.3	15.0	< 17.1	11.4
	Max	50.5	< 22.8	410.9	787.9	28.3	116.0
	# > MDL	37	1	23	44	9	25
	# > CCC					9	2
MDL							
	Mean	8.5	15.6	39.7	7.2	15.6	16.2
	Min	2.8	8.9	22.2	1.7	4.9	4.0
	Max	12.6	22.8	64.9	15.7	24.1	37.3

Table 3.6. Trace metals summary data for study sites.

¹Six sites, 15 samples; ²Method Detection Limit, mean of four sample season batches, values below batch MDL reported as "< [MDL value]"; ³Criteria Continuous Concentration, hardness-adjusted for Cu, Mn, Zn; ⁴21 sites, 63 samples;

3.4.3 Ionic Composition

Mean relative ionic composition of streamwater at reference sites was dominated on a mass basis by HCO_3^- (43%) and SO_4^{2-} (26%), followed by Ca^{2+} , Cl^- , Na^+ , Mg^{2+} , and K^+ (Figure 3.3a). Mean dissolved ion composition of streamwater at test sites was dominated on a mass basis by SO_4^{2-} (46%) and HCO_3^- (27%), followed by Ca^{2+} , Mg^{2+} , and Na^+ (Figure 3.3b). At test sites, Cl^- and K^+ each comprised approximately 1% of total ion concentration.

Figure 3.3. Mean relative ionic composition by mass of total dissolved solids for a) reference sites and b) test sites.

Reference sites had significantly higher relative proportions of HCO_3^- , CI^- , and K^+ than test sites, whereas test sites had significantly higher relative proportions of SO_4^{2-} and Mg^{2+} than reference sites (Table 3.7). There was no significant difference in relative proportion of Ca^{2+} and Na^+ between reference and test sites.

		1
Ion	p^1	Site Type With Greater Ion Proportion
SO_4^{2-}	< 0.0001	Test
Mg^{2+}	< 0.0001	Test
Ca^{2+}	0.0523	No difference
Na^+	0.3682	No difference
HCO ₃	< 0.0001	Reference
Cl	< 0.0001	Reference
\mathbf{K}^+	< 0.0001	Reference
lc		

Table 3.7. Relative ionic composition comparison between reference and test sites.

¹from one-sided Welch's t-test

3.4.4 Temporal Variability of TDS

There was little seasonal variability of TDS among reference sites (Figure 3.4a). Three additional reference sites with higher TDS were added in Spring 2010, which explains the greater range of values observed in that season than in previous seasons. There was no significant difference in TDS at test sites across four sample seasons (ANOVA, p = 0.28), although TDS was nominally higher in Fall (season mean: 500 mg/L) than in Spring (season mean: 371 mg/L) (Figure 3.4b).

Figure 3.4. Box plots of total dissolved solids (TDS) at a) reference sites and b) test sites by sample season.

3.4.5 Inter-site Variability of TDS Level and Ionic Composition

Laurel Fork (LAU) is a forested second-order stream in southwestern Wise County with excellent habitat quality and no evidence of mining in the catchment. During site selection, it was categorized as a test site rather than a reference site because of a recent history of elevated and variable TDS (VDMME unpub. data). Monitoring data obtained from VDMME indicated multiple high-TDS (>200 mg/L with some >500 mg/L) samples in the Spring of 2007 and 2008. However, it exhibited very low TDS for three consecutive seasons of sampling during this study, with composition similar to reference sites (Figure 3.5). Therefore, Laurel Fork was excluded , leaving 21 test sites that were used for analyses.

Among test sites, ionic composition of TDS was similar (Figure 3.3b), with two exceptions: Jess Fork and Gin Creek. Jess Fork (JES) is a second-order stream draining surface-mine activity in northwestern Buchanan County. Its mean HCO_3^- proportion was 6.6%, whereas mean HCO_3^- proportion of all test sites was 28% (Figure 3.3b). In addition, the mean pH of the site was 7.01 (with a low of 6.57), which was lower than the mean pH of 7.71 for all test sites (Table 3.5).

Gin Creek (GIN) is another site with ionic composition that differs from the bulk of test sites. It is a second-order stream in northern Lee County that receives a discharge from an abandoned deep mine. The ionic composition of streamwater at the sampling station was consistently dominated by HCO_3^- and Na^+ with midrange TDS (Figure 3.6).

Figure 3.5. Stacked ion concentrations (means) for reference sites and Laurel Fork (LAU).

Figure 3.6. Stacked ion concentrations (means) for test sites.

3.4.6 Correlations between Chemical Parameters

Test site dissolved ion concentrations were positively correlated with one another, and negatively correlated with VASCI (Table 3.8). The measures most strongly correlated with VASCI were TDS (-0.64), SC (-0.63), Ca^{2+} (-0.61), and SO_4^{2-} (-0.58). Pairwise correlations among these four water quality parameters were strong, with correlation coefficients > 0.90 for each pair. Weaker correlations were observed between VASCI and HCO_3^- (-0.42) and Na^+ (-0.35) (Table 3.8).

	VASCI ²	TDS^3	SC^4	Ca^{2+}	SO_4^{2-}	Mg^{2+}	\mathbf{K}^+	HCO ₃ ⁻	Na^+
	Score	mg/L	μS/cm			mg	j/L		
TDS	-0.64								
SC	-0.63	0.99							
Ca^{2+}	-0.61	0.91	0.90						
SO_4^{2-}	-0.58	0.92	0.91	0.94					
Mg^{2+}	-0.55	0.87	0.85	0.95	0.94				
\mathbf{K}^+	-0.54	0.90	0.89	0.82	0.83	0.81			
HCO ₃ ⁻	-0.42	0.64	0.67	0.45	0.38	0.35	0.63		
Na^+	-0.35	0.34	0.37				0.31	0.67	
Cl								0.30	0.58

Table 3.8. Matrix of significant¹ Spearman correlations for major ions, total dissolved solids, specific conductance, and Virginia Stream Condition Index scores of test sites.

 $^{1}\alpha = 0.05$; ²Virginia Stream Condition Index; ³total dissolved solids; ⁴specific conductance.

4.0 FAMILY-LEVEL ANALYSIS: VASCI ASSOCIATIONS WITH TDS

4.1 VASCI Metrics

Mean values for all raw VASCI metrics and scores were significantly different between reference and test sites (Table 4.1). Values for Total Taxa Richness, EPT Taxa Richness, % Ephemeroptera, % Scrapers, % Chironomidae, HBI, and VASCI score were all significantly higher in reference sites, whereas % PT-Hydropsychidae and % 2 Dominant Taxa were significantly higher in test sites (Table 4.1). Differences concerning % Chironomidae, HBI, and % PT-Hydropsychidae were in directions counter to those expected in response to disturbance (Tables 2.2 and 4.1).

	_	Total	EPT	%	%	%	%	%	11018	VASCI ⁹
		Taxa ¹	Taxa ²	E^3	$PT-H^4$	Scrap ⁵	Chiron ⁶	2 Dom^7	HBI	Score
Reference Si	tes ¹⁰									
	Mean	17.3	12.1	20.8	38.6	15.2	17.3	46.4	3.4	72.56
	SD	2.3	2.4	13.5	14.3	7.9	11.2	7.6	0.6	7.69
	Min	13	8	2.0	18.0	1.0	0.0	32.7	2.3	60.91
	Max	20	16	41.3	71.3	25.7	40.7	58.3	4.3	84.98
Test Sites ¹¹										
	Mean	13.0*	8.3*	11.7*	56.6*	4.8*	8.1*	63.7*	2.6*	62.36*
	SD	3.4	3.1	11.4	16.7	5.1	6.5	14.9	0.9	9.87
	Min	5	2	0.0	16.5	0.0	0.0	37.7	1.0	42.76
	Max	22	16	43.0	88.2	18.7	27.0	96.1	5.0	78.24

Table 4.1. Virginia Stream Condition Index raw metrics and score summary for study sites.

¹Total Taxa Richness; ²EPT Taxa Richness; ³Percent Ephemeroptera; ⁴Percent Plecoptera and Trichoptera less Hydropsychidae; ⁵Percent Scrapers; ⁶Percent Chironomidae; ⁷Percent Two Dominant Taxa; ⁸Hilsenhoff Biotic Index; ⁹Virginia Stream Condition Index; ¹⁰Six sites, 15 samples; ; ¹¹21 sites, 63 samples; *Mean is significantly different from reference ($\alpha = 0.05$);

4.2 Correlations between VASCI Metrics and TDS, SC, and SO₄²⁻

Five of the eight individual VASCI metrics were significantly correlated with SC, TDS, and SO_4^{2-} at test sites (Table 4.2). EPT Taxa Richness had the strongest correlation with these three water quality measures (-0.65 to -0.70), followed by Total Taxa Richness (-0.58 to -0.65), % Scrapers (-0.51 to -0.55), % Ephemeroptera (-0.45 to -0.51), and % 2 Dominant Taxa (0.30 to 0.40) (Table 4.2). The VASCI metrics % PT-Hydropsychidae, % Chironomidae, and HBI were not significantly correlated with these selected water quality measures.

Table 4.2. Matrix of significant Spearman correlation coefficients between Virginia Stream Condition Index metrics and selected water quality measures.¹

	1 2		
$\mathbf{V} \wedge \mathbf{S} \mathbf{C} \mathbf{I}^2 \mathbf{M} \mathbf{c} \mathbf{t} \mathbf{r} \mathbf{i} \mathbf{c}$	SC^3	TDS^4	SO_4^{2-}
VASCI Metile	μS/cm	mg/L	mg/L
EPT Taxa Richness	-0.70	-0.70	-0.65
Total Taxa Richness	-0.64	-0.65	-0.58
% Scrapers	-0.51	-0.52	-0.55
% Ephemeroptera	-0.49	-0.51	-0.45
% 2 Dominant Taxa	0.40	0.42	0.30

¹significance base on $\alpha = 0.05$; ²Virginia Stream Condition Index; ³specific conductance; ⁴total dissolved solids.

4.3 Seasonality of VASCI Scores

Spring VASCI scores were significantly higher than Fall VASCI scores at both reference and test sites (Figure 4.1). Paired t-tests for sites that were sampled in consecutive Fall-Spring seasons also show a higher VASCI score in Spring than in Fall (Figure 4.2). Mean differences between Spring and Fall VASCI scores for reference and test sites were 7.3 and 6.1, respectively (Figure 4.2).

Figure 4.1. Box plot of a) reference site and b) test site Virginia Stream Condition Index (VASCI) scores by season (Reference: Fall n = 6, Spring n = 9, p = 0.03; Test: Fall n = 26, Spring n = 37, p = 0.0008).

Figure 4.2. Box plot of site-paired seasonal Virginia stream condition index (VASCI) score differences (Spring minus prior Fall) for consecutive fall-spring sample pairs, by site type (Ref n = 6 site pairs, Test n = 26 site pairs).

4.4 Associations between VASCI Score and Dissolved Solids

Associations between water quality measures and biological effects (*i.e.*, VASCI < 60) were variable. Reference sites exhibited an absence of biological effects at TDS levels ranging from 8 to 76 mg/L. At test sites, biological effects were noted at TDS levels ranging from > 190 mg/L to 1,378 mg/L, the maximum recorded. All samples with TDS \geq 1,108 mg/L exhibited biological effects. The lowest biological-effect levels observed for SC and SO₄²⁻ were 332 µS/cm and 70 mg/L, respectively; whereas all samples with \geq SC 1,366 µS/cm and SO₄²⁻ \geq 849 mg/L demonstrated biological effects. Within the water quality range above the minimum observed biological effect level (*i.e.*, >190 mg/L TDS), benthic macroinvertebrate communities exhibited biological effects inconsistently, but with increasing frequency as TDS increased up to 1,108 mg/L.

4.4.1 Ordinary Least Squares Linear Regression with Mixed Effects

Ordinary Least Squares (OLS) linear regression of test-site VASCI score versus log-transformed TDS with sample season as a random effect was significant for TDS (Figure 4.3). Sample seasons had no significant effect on the model. Regressions of VASCI with other water quality parameters were also significant, with the exception of HCO_3^- (Table 4.3). Multiple regression was not used because of multicollinearity among water quality parameters (Table 3.8). Specific conductance, TDS, and $SO_4^{2^-}$ were retained for OEC determinations because they had the strongest relationships (excepting Ca²⁺) with VASCI score based on r^2 values (Table 4.3). Calcium was not included because it was highly correlated with $SO_4^{2^-}$ (Table 3.8), and $SO_4^{2^-}$ has been shown to be a good indicator of mining disturbance (*e.g.*, Pond et al. 2008).

The TDS model for Spring yielded a higher OEC (528 mg/L) than the Fall (337 mg/L) model, with the All-Year model (422 mg/L) in between the seasonal models (Table 4.4). Models for SC and SO_4^{2-} followed the same pattern, with values of 768, 634, and 523 μ S/cm SC for Spring, Fall, and All-Year models, respectively, and 336, 143, and 219 mg/L SO_4^{2-} for Spring, Fall, and All-Year models, respectively (Table 4.4).

TDS (mg/L)

Figure 4.3. Ordinary least squares regression plot of Virginia stream condition index (VASCI) score versus log-transformed total dissolved solids (TDS) with sample season as random effect. The fitted lines for each season and All-Year are shown, along with observed values for Fall samples (solid circles) and Spring samples (open circles). $r^2 = 0.475$, p < 0.0001 for the All-Year model.

Table 4.3. Ordinary least squares regression coefficients and r^2 values for All-Year linear model Virginia stream condition index = $\beta_0 + \beta_1[\ln(x)] + \varepsilon$, where x = water quality measure.¹

$\begin{array}{c c c c c c c c c c c c c c c c c c c $		-)			
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Predictor (x)	Units	β_0	β_1	r^2
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Total dissolved solids	mg/L	113.42	-8.83816	0.475
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	SO_4^{2-}	mg/L	101.28	-7.66026	0.474
$\begin{array}{llllllllllllllllllllllllllllllllllll$	Ca^{2+}	mg/L	99.42	-9.47779	0.470
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Specific conductance	μS/cm	130.31	-10.89646	0.469
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Normality	meq/L	85.88	-9.62729	0.461
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$SO_4^{2-} + HCO_3^{-} + Ca^{2+} + Mg^{2+}$	mg/L	118.80	-9.58040	0.458
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$SO_4^{2^-} + HCO_3^{-} + Ca^{2^+} + Mg^{2^+} + Na^+ + Cl^- + K^+$	mg/L	120.58	-9.74379	0.452
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	Hardness	mg/L as CaCO3	106.88	-8.19283	0.451
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	$SO_4^{2-} + HCO_3^{}$	mg/L	115.91	-9.49492	0.450
HCO ₃ mg/L 75.88 -3.10991 0.207	Mg^{2+}	mg/L	83.88	-6.65858	0.423
	HCO ₃	mg/L	75.88	-3.10991	0.207

¹Test sites only. All regressions are significant (p < 0.0001), except HCO₃⁻ (p = 0.09).
0	1 0		
Model	SC^1	TDS^2	SO_4^{2-}
Model	μS/cm	mg/L	mg/L
Spring	768	528	336
All-Year	634	422	219
Fall	523	337	143
1			

Table 4.4. Observed effect concentrations for specific conductance, total dissolved solids, and $SO_4^{2^2}$, estimated using ordinary least squares regression.

¹specific conductance; ²total dissolved solids;

4.4.2 Quantile Regression

Quantile linear regression of test-site VASCI score versus log-transformed TDS indicated a significant negative association at the 10^{th} , 25^{th} , 50^{th} , and 75^{th} quantiles, but was not significant at the 90^{th} quantile (Figure 4.4). Regressions of VASCI with SC and $SO_4^{2^-}$ also exhibited significant negative associations at all but the 90^{th} quantile (Table 4.5).

For TDS, the model for the 75th quantile (637 mg/L) yielded the highest OEC, with decreasing effect concentrations at the 50th (421 mg/L), 25th (263 mg/L), and 10th (142 mg/L) quantile models (Table 4.6). Models for SC and SO₄²⁻ followed the same pattern, with values of, 904, 625, 429, and 281 μ S/cm for the SC 75th, 50th, 25th, and 10th quantile models, respectively, and 392, 219, 133, and 48 mg/L for the SO₄²⁻ 75th, 50th, 25th, and 10th quantile models, respectively (Table 4.6).

Figure 4.4. Quantile regression fitted lines of Virginia stream condition index (VASCI) versus total dissolved solids (TDS) (log transformed) for 10^{th} , 25^{th} , 50^{th} , 75^{th} , and 90^{th} quantiles, along with observed values (open circles). All models shown except the 90^{th} quantile are significant.

Table 4.5. Quantile regression coefficients for linear equation [Virginia Stream Condition Index $score]_Q = \beta_0 + \beta_1[ln(x_Q)] + \epsilon$.

Predictor (x)	Quantile (Q)	β_0	β_1	p-value (β_1)
Specific conductance (µS/cm)				
	75	146.26	-12.6737	0.0003
	50	139.19	-12.3012	<.0001
	25	139.09	-13.0464	<.0001
	10	128.04	-12.0658	0.0013
Total dissolved solids (mg/L)				
	75	123.50	-9.8345	0.0001
	50	121.75	-10.2209	<.0001
	25	115.92	-10.0348	<.0001
	10	104.78	-9.0365	0.0007
SO_4^{2-} (mg/L)				
	75	112.26	-8.7531	0.0013
	50	113.52	-9.9276	<.0001
	25	102.30	-8.6492	0.0019
	10	85.89	-6.6922	0.0436

V	1	2	0
Quantile	SC ¹	TDS^2	SO_4^{2-}
	μS/cm	mg/L	mg/L
90	NS^{3}	NS	NS
75	903	637	392
50	625	421	219
25	429	263	133
10	281	142	48

Table 4.6. Observed effect concentrations for specific conductance, total dissolved solids, and $SO_4^{2^2}$ using quantile regression.

¹specific conductance; ²total dissolved solids; ³not significant (p > 0.05)

4.5 Observed Effect Concentrations

As TDS and associated water quality measures increased beyond the minimum biological effect levels, benthic macroinvertebrate communities exhibited biological effects with increasing frequencies. Observed values for biological effects can be integrated with OLS and quantile regression results (Table 4.7) to describe the probability of biological effect at various water quality levels (Figure 4.5).

The empirical lower OEC bounds were 332 μ S/cm, 190 mg/L, and 70 mg/L for SC, TDS, and SO₄²⁻, respectively (Table 4.7). The empirical upper OEC bounds were 1,366 μ S/cm, 1,108 mg/L, and 849 mg/L for SC, TDS, and SO₄²⁻, respectively. Modeled OECs determined using OLS and quantile regression generally occur between these empirical bounds (Table 4.7 and Figure 4.5).

Mathad	Probability of Biological	Model/	SC^2	TDS ³	SO_4^{2-}
Method	Effect at OEC^{1} (%)	Quantile (%)	(µS/cm)	(mg/L)	(mg/L)
OLS Regression		Fall	523	337	143
	50	All-Year	634	422	219
		Spring	768	528	336
Quantile Regression	10	10	281	142	48
	25	25	429	263	133
	50	50	625	421	219
	75	75	903	637	392
Measured Values	0	All-Year	332	190	70
	100	All-Year	1366	1108	849

Table 4.7. Observed effect concentration found to be associated with probabilities of biological effect.

¹Observed Effect Concentration; ²specific conductance; ³total dissolved solids.

Figure 4.5. Biological effect (VASCI < 60) probability at each observed effect concentration (OEC) for total dissolved solids (TDS). The OECs from three seasonal ordinary least squares (OLS) linear regression models (squares) and four quantiles of the Quantile Regression model (circles) are shown, along with OEC bounds (Xs) from measured TDS. Relative certainty surrounding each point is ordered as follows: observed values > OLS models ~ Q50 > Q25 ~ Q75 > Q10.

4.6 Discussion

4.6.1 Ionic Composition of TDS

Test site TDS was dominated by SO_4^{2-} and HCO_3^- , which is typical of alkaline mine drainage in the region (Pond et al. 2008, Timpano et al. 2010). In addition, the dominant cation in streamwater TDS was Ca^{2+} . This is a different matrix from those commonly tested in laboratory evaluations of salt toxicity, where Na^+ is often the dominant cation (Kennedy 2005, Soucek and Kennedy 2005). TDS at test sites exhibited ionic compositions that differed from those at reference sites, because SO_4^{2-} was the dominant ion at test sites, but HCO_3^- was the dominant ion at reference sites. Because it has been documented that ionic composition influences ion toxicity (Soucek and Kennedy 2005, Mount et al. 1997), one of the objectives of this study was to determine if ionic composition influenced the associations between TDS and biotic condition. However, evaluation of the effects of differing ionic compositions on VASCI score was not possible, because the study sites, with few exceptions, had similar relative ionic composition (Figure 3.3b).

4.6.2 Seasonality of VASCI Scores

Spring VASCI scores were generally higher than same-site prior-Fall VASCI scores, at both reference and test sites (Figure 4.2). This observation is different from the results of VASCI development studies, which found no difference in VASCI scores between seasons (Burton and Gerritsen 2003, VDEQ 2006a). Those studies, however, were conducted at sites located throughout Virginia's non-coastal region, with only a few sites located within the current study area. The finding that seasonal VASCI differences occur at reference sites suggests that there may be natural seasonal differences in benthic macroinvertebrate communities that influence VASCI scores for headwater streams in the study region.

Seasonality of VASCI scores in the coalfield region is relevant to the application of water quality policies and/or practices to protect aquatic life, because at present the VASCI makes no distinction between seasons and VDEQ requires streams to $s \ge 0.000$ year -round (VDEQ 2010a). If further research were to conclude that naturally occurring seasonal differences in benthic macroinvertebrate communities cause VASCI scores to be lower in Fall for headwater streams in this part of Virginia, that finding would be relevant to VASCI application for water quality assessments in such streams. Although reference sites scored lower in Fall, all reference VASCI scores were > 60 during that season (Figure 4.1a).

Further study of reference-quality streams in the Central Appalachian ecoregion of Virginia would confirm whether a natural seasonal difference in VASCI score exists. Such study would also improve understanding of how the VASCI's current calibration is influencing results of its application in the Central Appalachian region of Virginia, a region that was not heavily represented during VASCI development (Burton and Gerritsen 2003, VDEQ 2006a).

4.6.3 Variability of TDS

There was no indication of seasonal TDS differences at the study sites collectively, although TDS was nominally higher in Fall than in Spring (Figure 3.4b). However, for any sample site there are at most four samples spread over 21 months. It is unclear whether the TDS concentration observed at any given site represents the concentration that is driving biological response at that site, because it is possible that some sites may have had higher TDS concentrations than were measured within the limited sampling framework of this study.

Frequency, duration, and intensity of exposure can affect the biotic impact of a stressor (USEPA 2000). Benthic macroinvertebrate communities are a good bioindicator because they integrate effects of stressors over the life cycle of each taxon (Barbour et al. 1999). Early life stages (eggs and hatchlings) of benthic insects can be \leq 50% as tolerant of salinity as their older counterparts (Kefford et al. 2004). Because it is the mature specimens that are the target of rapid bioassessment sampling (mature specimens facilitate reliable identification), it is quite possible that the TDS observed at the time of collection may not represent the TDS to which the more-sensitive eggs and hatchlings were exposed. Therefore, more frequent TDS monitoring over the course of one or more years would be necessary to more accurately characterize the pattern of TDS exposure throughout life cycles of benthic organisms, such that biota-limiting levels of TDS can be more accurately determined.

For these reasons, it cannot be determined whether the stressor levels measured during biotic sampling are indeed the levels that influenced biotic conditions that were observed. This assessment therefore defined biological effect as simply the observation of VASCI < 60, and then determined stressor levels at the time of sampling that were associated with those biological observations. The term "observed effect concentration" is not used in a causal context for this study; it is the water quality level observed at the time of biological sampling that is associated with observation of an explicitly defined biological effect (VASCI < 60).

4.6.4 Variability of VASCI-TDS Associations

Water quality–VASCI associations were highly variable, with water quality explaining < 50% of VASCI variability (Table 4.4). The source of this variability is unknown, but several candidate causes can be suggested. Natural seasonal differences in VASCI score, as observed in reference sites, may be partly responsible (Figure 4.1a). Precision of the VASCI, as developed, is estimated at +/- 7.9 points (Burton and Gerritsen 2003). Unknown and unobserved non-TDS stressors may be influencing VASCI in addition to TDS. As an example, mean stream temperatures at test sites were nominally higher than at reference sites, but data are not available for summer maximum temperatures; seasonal thermal regime is an important factor affecting aquatic insect communities (Vannote and Sweeney 1980). Though not considered a stressor *per se*, an unknown factor is the temporal pattern of TDS exposure, which could influence biotic response (USEPA 2000). Because TDS was only measured twice per year, it is not known whether the benthic macroinvertebrate community was exposed to a higher, biological effect-inducing level of TDS at some time prior to sampling.

4.6.5 Comparisons with Other Studies

This study derived OECs that were higher than those found in other investigations of benthic macroinvertebrate communities in coal-mining-influenced Appalachian streams (Pond et al. 2008, Green et al. 2000). The differences may be due in part to the fact that the present study examined biotic condition associations with TDS where influence from non-TDS stressors was minimized, as well as to differences in methods for defining biological effects of significance.

In a study of West Virginia streams influenced by mixed land uses, including mining valley fills, Green et al. (2000) estimated, using least squares linear regression with five seasons of data, that an SC of 426 μ S/cm corresponded to "good or better" conditions on the West Virginia Stream Condition Index (WVSCI). The present study, using OLS regression of four seasons of data, found that SC of 634 μ S/cm was associated with a 50% probability of biological effects, while some observations at higher levels failed to exhibit biological effects. The lower effect concentration observed by Green et al. (2000) could be due to combined effects of TDS and non-TDS stressors, and to differences in what constitutes a "biological effect". Mining-influenced sites in that study included those with residential influences, and habitat quality was correlated with both SC and biotic condition.

Pond et al. (2008) found all sites > 500 μ S/cm impaired using a genus-level benthic macroinvertebrate index in West Virginia streams. However, the authors noted that habitat quality explained some of the variance of the index. Here, biological effects were not observed at all sites until SC was \geq 1,366 μ S/cm, which is closer to the 1,500 μ S/cm survival effect concentration observed by Kennedy et al. (2004) for the mayfly genus *Isonychia* when exposed to simulated mine drainage in the laboratory. One factor contributing to the finding of impaired

sites at SC >500 μ S/cm by Pond et al. (2008) was likely the nature of the biological-effect definition that those authors employed. That study used a biotic index specifically designed to differentiate stressed sites from reference sites, where SC >500 μ S/cm was an *a priori* criterion for site classification.

In a survey of West Virginia streams influenced by acid mine drainage (AMD), Freund and Petty (2007) found benthic macroinvertebrate assemblages to be impaired at all sites where SC was > 501 μ S/cm or SO₄²⁻ was > 213.2 mg/L, values which are lower than the corresponding values (1,366 μ S/cm SC, and 849 mg/L SO₄²⁻) identified here. Their definition of biotic effect was based on the WVSCI, a 6-parameter multimetric index that is not identical to the VASCI, so it is not surprising that their findings of maximum threshold levels differed. They also found that pH and Al concentration both explained more variance in WVSCI than did SC or SO₄²⁻, a likely consequence of the fact that their streams were selected for study based on AMD influence; thus, it is likely that factors in addition to SC and SO₄²⁻ were having influence on the biotic effects observed in their study.

4.6.6 Determination of TDS Levels Associated with Aquatic Life Effects

Selecting a stressor level to protect aquatic life is a regulatory decision driven by the measure of biotic condition that is considered socially desirable or acceptable. This analysis used the VASCI as a biotic condition measure. The VASCI is applied within Virginia using VASCI = 60 as a biotic impairment threshold. Thus, analysis has been presented on that basis, while recognizing that other measures of what is a "socially acceptable" biotic condition may be employed.

One essential question is whether TDS, SC, or a component ion such as SO_4^{2-} would be best employed as a biotic effect predictor. The results of this study, conducted in mining-influenced streams where SO_4^{2-} is the dominant anion and Ca^{2+} is the dominant cation, did not indicate one measure over another as the best choice. In test streams, TDS concentration, SC, and SO_4^{2-} concentration were all highly correlated, and potential application of each as a biological effect predictor gives parallel results.

These results do not indicate a single TDS/ion/SC level as an obvious choice for aquatic life protection in the regulatory context. Each of the candidate OECs carries with it a degree of risk of erroneously predicting biotic condition at the OEC, given that biotic condition (as measured by the VASCI) can vary widely at any single concentration. Thus, choice of an OEC as predictive of a certain biotic condition, within a regulatory context, would require a decision concerning allocation of prediction error probabilities. These results are presented within that context.

Although the biological effect probability plot (Figure 4.5) can be used to select an OEC to satisfy one of many desired error probabilities, some constraints are evident. First, biological effects (VASCI < 60) were observed in all samples higher than 1,366 μ S/cm SC, 1,108 mg/L TDS, and 849 mg/L SO₄²⁻ (Table 4.7), suggesting these higher levels may be associated with very high probability of aquatic life effects in streams of the region. Second, no biological effects were observed in all samples lower than 332 μ S/cm SC, 190 mg/L TDS, and 70 mg/L SO₄²⁻ (Table 4.7), suggesting these lower levels may be associated with very low probability of aquatic life effects in streams. Finally, Fall and Spring OLS models must have a biological

effect probability less than and greater than 50%, respectively, if the water quality level is applied year-round, because the All-Year model criterion applied year-round would have a 50% impairment probability. If either the Fall or Spring model OEC is applied seasonally, then biological effect probability would be 50% for that season (Table 4.7). The biological effect probabilities for other OECs can be used to approximate the biological effect probability associated with any given concentration (Figure 4.5). Which model or combination to choose depends critically on the management goals for the stream(s) in question. Regardless of goals, there are reasonable choices that are supported by these data that should satisfy a range of management objectives.

4.6.7 Limitations of Data Interpretation

It is important to note that interpretability of these data is limited because the study design was not statistically unbiased in the manner by which sites were selected. A strict, targeted approach to site selection was employed in order to isolate TDS effects. In that way, this study was less like a spatially-balanced probabilistic survey and more similar to a laboratory toxicity test where a gradient of treatment levels are assigned to experimental units free from influence by confounding factors. However, specific treatment levels were not controlled in this study and thus the frequency distribution of observations is not even across the gradient of TDS. Multiple sampling visits were made to an increasing number of sites each sample seasons; thus, the data set is not seasonally balanced. Regression analysis describes the association between VASCI and TDS in a manner that is independent of the sampling distribution of these data. For that reason, distribution-based analyses were avoided (*e.g.*, Paul and McDonald 2005, USEPA 2010). Despite such limitations, these results provide strong support for the use of TDS and/or a highly correlated measure such as SC or SO₄²⁻ as a water quality measure that can be interpreted as an aquatic life effect predictor in these streams.

4.7 Conclusions

Site selection efforts effectively minimized the influence of non-TDS stressors at the study sites. This offers a novel approach because many studies in the region have observed influence from TDS-covariate stressors. The additional time cost to implement this approach yielded a clear benefit to this dataset, because it is free of major influence by non-TDS stressors.

Significant negative associations were observed between measures of biological condition and $TDS/SC/SO_4^{2^-}$. Relationships were strongest with family-level richness of the generally sensitive orders Ephemeroptera, Plecoptera, and Trichoptera. Increasing TDS was also associated with decreased total richness, as well as lower Ephemeroptera and scraper abundance.

Composition of TDS was characterized and found to be generally similar across test sites and dominated by SO_4^{2-} and HCO_3^{-} as expected of streams receiving alkaline mine drainage in the Appalachian coalfield region. It was not possible to evaluate the influence of TDS composition on biotic condition, because there was not sufficient difference in TDS composition among sites for statistical analysis.

The relationship between VASCI score and $TDS/SC/SO_4^{2-}$ was similar using two linear regression approaches. Resultant models and empirical data provided evidence to support a range of observed effect concentrations (OECs) that vary in degree of aquatic life effect probability.

5.0 GENUS-LEVEL ANALYSIS: FIELD SENSITIVITY DISTRIBUTIONS

5.1 Benthic Macroinvertebrate Taxa

Benthic macroinvertebrate sampling yielded 97 taxa (95 genera, plus Chironomidae and Oligochaeta) from 81 samples during two years (Table 5.1). Of the 97 taxa, nine were unique to reference sites, whereas 26 were found only at test sites. Taxa observed only in Spring numbered 20, with 21 taxa found only in Fall. Data filters were applied, which resulted in 37 taxa that did not meet criteria for FSD inclusion. Two taxa (*Atrichopogon* and *Cheumatopsyche*) with more than four observations were excluded because they were not observed in reference samples. The remaining 35 excluded taxa had fewer than four observations. A total of 60 taxa were retained for FSD analysis (Table 5.1).

Table 5.1. Taxa sampled by season and site type.

Taxon	Obs	Season	Site Type	Excluded ¹
Acentrella	20	Both	Both	
Acroneuria	41	Both	Both	
Agapetus	7	Spring	Both	
Allocapnia	30	Fall	Both	
Allognosta	1	Spring	Test	x
Ameletus	33	Both	Both	1
Amphinemura	48	Both	Both	
Antocha	4	Both	Both	
Arigomphus	39	Both	Both	
Atherix	1	Fall	Test	x
Atrichonogon	5	Fall	Test	x
Attenella	8	Roth	Both	А
Raetis	56	Both	Both	
Beloneuria	1	Fall	Test	v
Roveria	2	Both	Test	A V
Coratonsycho	28	Both	Roth	Λ
Chalifara	20	Both	Both	
Cheumatonsyche	24	Both	Test	v
Cheumaiopsyche	20	Both	Test	A V
Chimarra Chironomidao ²	20 20	Doth	Poth	А
Cimonolidae	80	Series	Doth	
Cinygmula	4	Doth	Doth	
Cunocera	4	Doui	Бош	
Coraulegaster	5	Spring	T est	X
Cyrnellus	5	Both	Both	
Dicranota	13	Both	Both	
Diphetor	1	Fall	Test	Х
Diplectrona	75	Both	Both	
Diploperla	1	Fall	Test	х
Dixa	13	Both	Test	х
Dolophilodes	38	Both	Both	
Drunella	12	Spring	Both	
Ectopria	37	Both	Both	
Epeorus	35	Both	Both	
Ephemera	4	Both	Both	
Ephemerella	27	Both	Both	
Eurylophella	2	Fall	Reference	Х
Glossosoma	3	Spring	Test	Х
Haploperla	17	Both	Both	
Helichus	4	Both	Both	
Hemerodromia	10	Both	Both	
Heptagenia	1	Fall	Test	Х
Hexatoma	26	Both	Both	
Homoplectra	1	Spring	Test	Х
Hydatophylax	6	Fall	Both	
Hydracarina	1	Fall	Reference	х
Hydrochus	1	Spring	Test	х
Hydropsyche	12	Both	Both	
Hydroptila	2	Spring	Test	х
Isonvchia	3	Spring	Both	х

¹Taxa with fewer than four observations or not found at a reference site were excluded from analysis. ²Taxa not identified to genus, but treated as such for analysis.

Table 5.1, cont'd.

Taxon	Obs	Season	Site Type	Excluded
Isoperla	24	Both	Both	
Lepidostoma	9	Both	Both	
Leuctra	67	Both	Both	
Limnophila	25	Both	Both	
Limonia	2	Both	Reference	х
Lype	1	Fall	Reference	х
Maccaffertium	17	Both	Both	
Macronychus	2	Spring	Test	х
Mayatrichia	1	Spring	Test	Х
Molophilus	8	Both	Both	
Neophylax	20	Both	Both	
Neotrichia	6	Both	Test	Х
Nigronia	18	Both	Both	
<i>Oemopteryx</i>	1	Fall	Reference	х
Oligochaeta ²	38	Both	Both	
Optioservus	10	Both	Both	
Ormosia	2	Spring	Test	х
Oulimnius	43	Both	Both	
Palpomyia	11	Both	Both	
Paracapnia	16	Fall	Both	
Paraleptophlebia	22	Both	Both	
Peltoperla	20	Both	Both	
Perlesta	21	Spring	Both	
Polycentropus	32	Both	Both	
Prosimulium	1	Spring	Reference	х
Psephenus	13	Both	Both	
Pseudolimnophila	1	Fall	Test	х
Pteronarcvs	19	Both	Both	
Pvcnopsvche	6	Both	Both	
Remenus	2	Spring	Reference	х
Rhvacophila	69	Both	Both	
Sialis	2	Fall	Test	х
Simulium	28	Both	Both	
Sovedina	4	Fall	Both	
Stenacron	5	Both	Both	
Stenelmis	3	Spring	Both	х
Stenonema	4	Fall	Both	
Stilobezzia	3	Fall	Reference	х
Stylogomphus	1	Fall	Test	X
Sweltsa	15	Both	Both	
Tabanus	1	Spring	Test	х
Taenioptervx	11	Fall	Both	
Tallaperla	4	Both	Test	х
Timpanoga	1	Spring	Test	x
Tipula	40	Both	Both	21
Viehoperla	1	Spring	Reference	x
Wormaldia	17	Fall	Both	A
Yugus	23	Both	Both	

¹Taxa with fewer than four observations or not found at a reference site were excluded from analysis. ²Taxa not identified to genus, but treated as such for analysis.

5.2 Maximum Field Concentrations

Specific conductance MFCs ranged from 357 to 1,335 μ S/cm for the Spring model, 402 to 1,670 μ S/cm for the Fall model, and 25 to 1,670 μ S/cm for the All-Year model (Table 5.2). Total dissolved solids MFCs ranged from 298 to 1,070 mg/L for the Spring model, 263 to 1,378 mg/L for the Fall model, and 28 to 1,378 mg/L for the All-Year model (Table 5.3). The SO₄²⁻ MFCs ranged from 90 to 769 mg/L for the Spring model, 108 to 849 mg/L for the Fall model, and 5 to 849 mg/L for the All-Year model (Table 5.4).

		Model				Model	
Taxon	All-Year	Spring	Fall	Taxon	All-Year	Spring	Fall
	SC I	MFC (µS/cm)			SC I	MFC (µS/cm)	
Acentrella	1061	1061		Isoperla	842	842	546
Acroneuria	1670	1335	1670	Lepidostoma	594	594	
Agapetus	594	594		Leuctra	1335	1335	1183
Allocapnia	1670		1670	Limnophila	1335	1335	1183
Ameletus	1183	706	1183	Maccaffertium	784	357	784
Amphinemura	1335	1335		Molophilus	1061	1061	
Antocha ¹	25			Neophylax	607	607	402
Arigomphus	1670	1061	1670	Nigronia	1462	1282	1462
Attenella	656		656	Oligochaeta	1670	1282	1670
Baetis	1366	1335	1366	Optioservus	1670		1670
Ceratopsyche	1670	842	1670	Oulimnius	1366	1335	1366
Chelifera	1366	1335		Palpomyia	656		656
Chironomidae	1670	1335	1670	Paracapnia	682		682
Cinygmula	462	462		Paraleptophlebia	652	594	652
$Clinocera^{1}$	607			Peltoperla	1087	757	1087
Cyrnellus ¹	842			Perlesta	1335	1335	
Dicranota	842	842	450	Polycentropus	970	970	652
Diplectrona	1670	1335	1670	Psephenus	706	706	
Dolophilodes	1670	1335	1670	Pteronarcys	970	970	450
Drunella	490	490		Pycnopsyche	1670		1670
Ectopria	1670	970	1670	Rhyacophila	1670	1335	1670
Epeorus	970	970	546	Simulium	1462	1335	1462
$Ephemera^{1}$	263			Soyedina	1366		1366
Ephemerella	706	706		Stenacron ¹	462		
Haploperla	546	490		Stenonema	468		468
<i>Helichus</i> ¹	652			Sweltsa	784		784
Hemerodromia	1462	757	1462	Taeniopteryx	1366		1366
Hexatoma	1335	1335	865	Tipula	1670	1282	1670
Hydatophylax	682		682	Wormaldia	1087		1087
Hydropsyche	1282	1282	1183	Yugus	1335	1335	

Table 5.2. Maximum field concentrations (MFC) for specific conductance (SC) using three seasonal models.

¹Taxa that did not meet minimum observation frequency requirements for separate Spring or Fall models.

		Model				Model	
Taxon	All-Year	Spring	Fall	Taxon	All-Year	Spring	Fall
	TDS	S MFC (mg/L)			TDS	MFC (mg/L)	
Acentrella	792	792		Isoperla	558	558	352
Acroneuria	1378	1070	1378	Lepidostoma	389	389	
Agapetus	389	389		Leuctra	1070	1070	862
Allocapnia	1378		1378	Limnophila	1070	1070	862
Ameletus	862	470	862	Maccaffertium	553	228	553
Amphinemura	1070	1070		Molophilus	784	784	
Antocha ¹	28			Neophylax	361	361	263
Arigomphus	1378	792	1378	Nigronia	1108	970	1108
Attenella	411		411	Oligochaeta	1378	970	1378
Baetis	1070	1070	1021	Optioservus	1378		1378
Ceratopsyche	1378	558	1378	Oulimnius	1070	1070	1021
Chelifera	1070	1070		Palpomyia	411		411
Chironomidae	1378	1070	1378	Paracapnia	493		493
Cinygmula	298	298		Paraleptophlebia	462	389	462
<i>Clinocera</i> ¹	361			Peltoperla	751	567	751
<i>Cyrnellus</i> ¹	558			Perlesta	1070	1070	
Dicranota	558	558	273	Polycentropus	792	792	462
Diplectrona	1378	1070	1378	Psephenus	470	470	
Dolophilodes	1378	1070	1378	Pteronarcys	792	792	273
Drunella	298	298		Pycnopsyche	1378		1378
Ectopria	1378	792	1378	Rhyacophila	1378	1070	1378
Epeorus	792	792	352	Simulium	1108	1070	1108
$Ephemera^{1}$	94			Soyedina	1021		1021
Ephemerella	470	470		Stenacron ¹	298		
Haploperla	352	290		Stenonema	281		281
<i>Helichus</i> ¹	462			Sweltsa	553		553
Hemerodromia	1108	567	1108	Taeniopteryx	1021		1021
Hexatoma	1070	1070	694	Tipula	1378	970	1378
Hydatophylax	493		493	Wormaldia	751		751
Hydropsyche	970	970	862	Yugus	1070	1070	

Table 5.3. Maximum Field Concentrations (MFC) for total dissolved solids (TDS) using three seasonal models.

¹Taxa that did not meet minimum observation frequency requirements for separate Spring or Fall models.

		Model	``	/		Model	
Taxon	All Year	Spring	Fall	Taxon	All Year	Spring	Fall
	SO_4^2	² MFC (mg/L)			SO_4^2	MFC (mg/L)	
Acentrella	531	531		Isoperla	311	311	205
Acroneuria	849	769	849	Lepidostoma	250	250	
Agapetus	250	250		Leuctra	769	769	477
Allocapnia	849		849	Limnophila	769	769	272
Ameletus	340	250	340	Maccaffertium	283	90	283
Amphinemura	769	769		Molophilus	494	494	
Antocha ¹	5			Neophylax	192	192	120
Arigomphus	849	531	849	Nigronia	679	623	679
Attenella	128		128	Oligochaeta	849	623	849
Baetis	769	769	629	Optioservus	849		849
Ceratopsyche	849	311	849	Oulimnius	769	769	629
Chelifera	769	769		Palpomyia	167		167
Chironomidae	849	769	849	Paracapnia	340		340
Cinygmula	156	156		Paraleptophlebia	272	250	272
$Clinocera^{l}$	178			Peltoperla	477	456	477
Cyrnellus ¹	311			Perlesta	769	769	
Dicranota	311	311	167	Polycentropus	531	531	272
Diplectrona	849	769	849	Psephenus	221	221	
Dolophilodes	849	769	849	Pteronarcys	531	531	163
Drunella	221	221		Pycnopsyche	849		849
Ectopria	849	531	849	Rhyacophila	849	769	849
Epeorus	531	531	205	Simulium	769	769	679
$Ephemera^{1}$	59			Soyedina	629		629
Ephemerella	221	221		Stenacron ¹	156		
Haploperla	221	221		Stenonema	108		108
Helichus ¹	272			Sweltsa	283		283
Hemerodromia	679	456	679	Taeniopteryx	629		629
Hexatoma	769	769	250	Tipula	849	623	849
Hydatophylax	340		340	Wormaldia	477		477
Hydropsyche	623	623	233	Yugus	769	769	

Table 5.4. Maximum Field Concentrations (MFC) for SO_4^{2-} using three seasonal models.

¹Taxa that did not meet minimum observation frequency requirements for separate Spring or Fall models.

5.3 Field Sensitivity Distributions

The seasonal FSDs for TDS were very similar, within the range from approximately 250 to 750 mg/L, with some divergence at TDS > 750 mg/L (Figure 5.1). At TDS < 250 mg/L the All-Year FSD is skewed downward by two genera, *Antocha* and *Ephemera*, with MFCs < 100 mg/L. Field sensitivity distributions for SC and SO₄²⁻ followed a similar pattern.

Figure 5.1. Field sensitivity distributions for total dissolved solids (TDS) for three seasonal models.

5.4 Observed Effect Concentrations

Observed effect concentrations were generally highest with the Spring model and lowest with the Fall model (Table 5.5). Mean OEC_{10} across all three seasonal models for SC, TDS, and $SO_4^{2^-}$ was 492 µS/cm, 299 mg/L, and 180 mg/L, respectively. The OEC_{05} and OEC_{10} were similar for SC and TDS models, with a mean difference ($OEC_{10} - OEC_{05}$) of 7% for all models. The mean difference between OEC_{05} and OEC_{10} for $SO_4^{2^-}$ models was 40%. The OEC_{20} values were higher than OEC_{10} values for all water quality parameters and models, with a mean difference of 33%.

Water Quality	Proportion		Model	
Parameter	Not Observed	Fall	Spring	All-Year
Specific Condu	ctance		(µS/cm)	
	5%	450	465	462
	10%	476	511	490
	20%	653	647	652
TDS			(mg/L)	
	5%	273	291	281
	10%	288	311	298
	20%	421	422	411
SO_4^{2-}			(mg/L)	
	5%	120	160	108
	10%	163	221	156
	20%	210	250	221

5.5 Salt Sensitivity by Taxonomic Group

Salt sensitivity varied among groups at multiple taxonomic levels. At the order level, genera of the typically salt-sensitive order Ephemeroptera exhibited lower MFCs (Figure 5.2) than genera from other orders. Trichoptera genera had the second lowest MFCs. Orders Plecoptera and Diptera were similarly sensitive to SC, and were observed at higher field concentrations than other orders.

Within orders, salt sensitivity varied among genera (Figure 5.3), with many taxa generally classified as pollution-tolerant (Barbour et al. 1999) located in the upper portion of the CDFs (*e.g.*, Ephemeroptera: genus *Baetis*; Trichoptera: family Hydropsychidae [genera *Hydropsyche*, *Ceratopsyche*, *Diplectrona*]).

Figure 5.2. Plot of All-Year cumulative distribution functions for total dissolved solids (TDS) maximum field concentrations (MFCs) by taxonomic order for the four most abundant taxonomic orders.

Figure 5.3. Plots of All-Year cumulative distribution functions of total dissolved solids maximum field concentrations (MFCs) with taxa names.

5.6 Discussion

5.6.1 Water Chemistry

Test site TDS was dominated by the anions SO_4^{2-} and HCO_3^{-} , which is typical of alkaline mine drainage in the region (Pond et al. 2008, Timpano et al. 2010, Timpano 2011). Reference site TDS, while significantly lower than TDS at test sites, had a higher relative proportion of the anion HCO_3^{-} (Timpano 2011). Test sites had significantly higher mean pH than did reference sites, a likely result of the higher HCO_3^{-} concentrations at the test sites (Table 3.5).

5.6.2 Benthic Macroinvertebrate Taxa Observed

The number of genera used for the All-Year model (60) is lower than the number of genera (128) from West Virginia's ecoregion 69 used by USEPA (2010) in developing a field-based SSD for specific conductance. However, the USEPA data included genus-level specimens in the family Chironomidae. The USEPA genera were also selected from 987 samples, with most sites yielding only a single sample, compared to the 81 samples from 28 sites used here. The USEPA genera were collected in Spring (March-June) and Summer (July-October), rather than Spring (March-May) and Fall (September-November) as was done here. The different sampling periods and number of samples may account for the difference in number of genera observed, whereas the lower taxonomic resolution of Chironomidae in this study contributed to the lower number of genera included here. Increasing the number of genera in the FSD analysis, particularly from the family Chironomidae, would be expected to result in higher OEC_X values. The USEPA (2010) study is the only known attempt to construct FSDs for benthic macroinvertebrates from this region using only field data. Further study of Virginia's coalfield streams would likely increase the number of taxa observed.

5.6.3 Maximum Field Concentrations

We are not aware of any other studies that have evaluated maximum field concentrations for individual taxa found in the Appalachian region, so comparisons to other values are not possible. Kefford et al. (2004a) examined maximum mean concentrations in Australian streams, and for different taxa than were observed here. In the present study some taxa were included in the All-Year model but were not included in one or both of the seasonal models. This is due to our requirement that a taxon be observed in a minimum of four samples to be used in analysis. For instance, if a taxon was observed in four Spring samples and one Fall sample, that taxon would be included in the Spring and All-Year models, but it would not be included in the Fall model (*e.g., Acroneuria*). For taxa not included in both Spring and Fall models, MFCs for Fall tended to be higher. This is likely because the highest TDS levels were observed during the Fall season. Where a taxon was included in only one of the Spring or Fall models, the All-Year model MFC was often equal to the seasonal model MFC.

5.6.4 Field Sensitivity Distributions

Field sensitivity distributions varied in their differences between seasonal models. At the lower portion of the FSD curve, which represents the more-sensitive taxa, the Spring model tended to have higher OEC_X values. However, at upper quantiles of the FSD curves, Fall models tended to have higher OEC_X values. This phenomenon occurred because of the presence of salt-sensitive Ephemeroptera taxa being present in Spring samples and not in Fall samples, coupled with the nominally higher TDS levels in the Fall.

5.6.5 Observed Effect Concentrations

In the present study, the specific conductance OEC_{05} differed from findings of USEPA (2010) in two ways. First, this analysis observed negligible differences among seasonal models. Fall, Spring, and All-Year models had OEC_{05} values for SC of 450, 465, and 462 µS/cm, respectively. This is in contrast to the USEPA (2010) finding of greater variation among seasonal models, with Spring, Summer, and All-Year models indicating specific SC of 322, 479, and 297 µS/cm, respectively, in that study. Second, the present analysis found generally higher SC values associated with biotic effects than did USEPA (2010). The methods of the two studies differed, making direct comparisons of OEC_X values difficult, but the disparate results support observations that the SSD approach is sensitive to data quality, quantity, and summary method (Wheeler et al. 2002).

Results presented here differ from those derived by USEPA (2010) for several reasons, including differences in number of genera used as discussed above. Also, the decision to group Chironomidae and Oligochaeta as individual taxa, as an alternative to genus-level taxonomic identification, likely influenced the FSDs. In addition, because the FSDs here were constructed using non-independent data (81 samples from 28 sites), interpretation of results of this study as a precise analog to results of by USEPA (2010) is not appropriate.

5.6.6 Seasonal Models

The All-Year model, which uses data from both fall- and spring-season samples, is a reasonable choice among seasonal model options for two reasons. First, the models yielded similar results between seasons, with a mean seasonal difference of 7%, suggesting that all of the models are similar. Second, the All-Year model incorporated 60 taxa, whereas the separate Spring and Fall models used only 42 and 41 taxa, respectively. With more taxa accounted for, the All-Year FSD better represents the diversity of benthic macroinvertebrate communities found in the study streams (USEPA 2010).

5.6.7 Maximum Field Concentration vs. Toxicity

Other researchers working outside of the Central Appalachian region of the U.S. have evaluated salt sensitivity of freshwater biota by measuring maximum dissolved salt levels associated with their occurrence *in situ* (Piscart et al. 2006, Kefford et al. 2004a, Leland and Fend 1998, Hart et al. 1991). Although results of such studies could be interpreted to indicate toxicity levels, that is not the interpretation applied here. As noted by Kefford et al. (2004a), the MFC for commonly occurring species often does serve as an indicator of salt toxicity, but MFCs may underestimate toxicity for relatively rare species because of their inherently low probability of occurrence at a site, regardless of TDS level. Their results suggest that factors in addition to salt concentration influence distributions of the relatively rare taxa (Kefford et al. 2004a).

Findings here are similar to those of Kefford et al. (2004a) in that most of the taxa recorded here were observed infrequently at salt concentrations below the taxon's respective MFC. The median taxon observation frequency at TDS levels < MFC was 27% for the 60 taxa in the All-Year model, with a median taxon observation frequency < MFC of only 15% for taxa with the lowest 20% of MFCs. The relative rarity of taxa occurrence below the MFC suggests that environmental conditions other than salt concentration are influencing distributions of rare taxa. For this reason, the distribution of MFCs over the range of TDS levels are interpreted here as indicating that the recorded taxa vary in salt sensitivity, but MFCs are not interpreted as being equivalent to TDS

toxicities. Supplemental analyses revealed that the lower portions of FSD curves, and OEC_X values derived from those curves, are influenced by the minimum-number-of-observations threshold used to determine which rare genera should be included in the FSD (Table 5.6).

distributions.					
All-Year Model	Minimum Observations				
5% Genera Not Observed	1	2	4	8	
	(µS/cm)				
Specific Conductance OEC ¹	21	24	462	565	
		(mg	g/L)		
$TDS^2 OEC$	11	26	281	355	
	(mg/L)				
SO ₄ ²⁻ OEC	4	5	108	177	

Table 5.6. Sensitivity of observed effect concentration to minimum number of taxa included in field sensitivity distributions

¹observed effect concentration; ²total dissolved solids

5.6.8 Salt-Sensitivity by Taxonomic Group

The FSD results were as expected, in that they placed typically salt-sensitive taxa (*e.g.*, Ephemeroptera genera) in the lower portion of the FSDs, whereas the typically less-sensitive taxa (*e.g.*, Plecoptera, Trichoptera, Diptera) occupied upper portions of the FSDs (Figure 5.1). Five of the 10 lowest MFCs in the All-Year model were for Ephemeroptera genera. These findings are consistent with other studies that found Ephemeroptera to be a relatively salt-sensitive group, responding to elevated TDS/SC with decreased relative abundance and decreased richness (Merricks 2007, Pond 2004, Pond and McMurray 2002, Green et al. 2000), shifts toward more facultative genera (Pond 2010, Pond et al. 2008), lower maximum field concentrations (Kefford et al. 2004a), and lower laboratory survival (Kefford 2003, Kennedy 2004) than macroinvertebrates from other groups. This indicates that the FSD approach is useful in identifying biotic-effect levels of TDS for salt-sensitive taxa in coalfield streams.

5.6.9 Variability of TDS

Frequency, duration, and intensity of exposure can affect the biotic impact of a stressor (USEPA 2000). The benthic macroinvertebrate community is a good bioindicator because it integrates effects of stressors over the life cycle of each taxon (Barbour et al. 1999). Early life stages (eggs and hatchlings) of benthic insects can be \leq 50% as tolerant of salinity as their older counterparts (Kefford et al. 2004b). Because it is the older, more mature specimens that are collected during sampling (mature specimens facilitate reliable identification), it is possible that the TDS observed at the time of collection may not represent the TDS to which the more-sensitive eggs and hatchlings were exposed. Therefore, more-frequent TDS monitoring over the course of one or more years may be necessary to characterize the pattern of TDS exposure throughout life cycles of benthic macroinvertebrates, such that biota-limiting levels of TDS may be more accurately determined.

By measuring TDS only twice per year, it cannot be determined whether the benthic macroinvertebrate community was exposed to a higher, biological effect-inducing level of TDS

at some time prior to sampling. Therefore, the OEC_X values derived here were not interpreted as toxicities in the sense that biological effects are ensured at the OEC_X .

5.6.10 Interpreting Results

This analysis was not based on a probabilistic, spatially balanced dataset as used by other investigators to derive stressor effect levels from field data (*e.g.*, Paul and McDonald 2005). For this reason, the OEC_x values are not interpreted as salt concentrations that are biotic effect thresholds for any stream in the region. Rather, the OEC_x values represent TDS levels that are tolerable, or not effect-inducing, to most of the reference-site taxa; it is unknown whether a higher TDS level may also be tolerated by the taxa, because of the uncertainty surrounding temporal variability and exposure patterns of TDS and because of the prominence of relatively rare taxa in lower portions of the FSDs. In addition, because this study was similar to a controlled laboratory experiment in that influence from non-TDS stressors was minimized, the OEC_x values reported are reasonable estimates of TDS levels below which most taxa could be expected to occur in coalfield streams where non-TDS stressors are minimized.

5.7 Conclusions

The SSD approach can be used with field data to create an FSD to identify TDS levels that are associated with low observation frequency of benthic macroinvertebrate genera in headwater streams of Virginia's Central Appalachian coalfield region. These results indicate that the observed FSD reflects salt sensitivity of benthic macroinvertebrate genera. However, observed effect concentrations are not interpreted as toxic levels for respective water quality measures, because many TDS-sensitive genera occurred infrequently in samples with salt concentrations below the MFC for that genus. The fact that taxa were not observed at concentrations above the MFC indicates salt sensitivity, although likely not at the precise concentration defined by the MFC.

Seasonal differences were not detected in observed effect concentrations (OECs) and the All-Year model comprised of data from both fall and spring sampling seasons is a better representation of benthic macroinvertebrate diversity in elevated-TDS coalfield streams, compared to the Spring and Fall models alone. These data indicate that concentrations of TDS from 411 to 281 mg/L are associated with observance in test sites of 80 to 95%, respectively, of genera observed at reference sites. However the OEC_X values derived here should be considered as estimates of salt tolerance, because there were relatively uncommon taxa included in the analysis and because OEC_x values are influenced by minimum observational thresholds for taxa inclusion (Table 5.6). The small number of sites sampled (28) limited the scope of these findings and suggests that further study of additional streams in the region would likely increase the number of genera observed, as well as better determine which genera are rare, thus improving the accuracy of any OEC_x determination.

6.0 SUMMARY AND CONCLUSIONS

6.1 Summary

Recent studies have found that benthic macroinvertebrate communities in streams below Appalachian surface coal mines often differ from communities found in streams draining nonmined catchments (Green et al. 2000, Paybins et al. 2000, Pond 2004, Hartman et al. 2005, Merricks et al. 2007, Pond et al. 2008). Elevated levels of total dissolved solids (TDS) have been suggested as a primary aquatic life stressor in streams influenced by coal mining (*e.g.*, Green et al. 2000, Pond 2004, Pond et al. 2008). Although field studies have found altered aquatic communities in streams affected by coal mining, much remains unknown about how benthic macroinvertebrate communities respond to specific TDS concentrations and compositions. In studies conducted to date, both non-TDS stressors and elevated TDS have been present as potential influences on biota in the streams assessed (Pond et al. 2008, Hartman et al. 2005, Howard et al. 2001).

Research reported here was conducted to characterize the biotic response to elevated TDS by surveying streams with a range of TDS concentrations where non-TDS stressors were minimized. Associations between TDS and biological condition were described for headwater streams in Virginia's Central Appalachian coalfields using family- and genus-level benthic macroinvertebrate data. First, levels of TDS, specific conductance (SC), and sulfate ($SO_4^{2^-}$) were determined that were associated with biological effects as defined using the Virginia Stream Condition Index (VASCI), a family-level multimetric index of benthic macroinvertebrate community composition that is used for Clean Water Act enforcement in Virginia's non-coastal streams (Burton and Gerritsen 2003, VDEQ 2010). Then, an approach similar to that of USEPA (2010) was used, applying the traditionally laboratory-based species sensitivity distribution (SSD) method to construct field sensitivity distributions (FSDs) using genus-level benthic macroinvertebrate field data. The FSDs were used to determine maximum field concentrations (MFCs) of TDS, SC, and SO₄²⁻ associated with absence of specific proportions of reference taxa.

With the study population constrained to headwater streams of Virginia's Central Appalachian coalfield region, the following research questions were addressed:

- 1) Can streams be located where non-TDS stressors are minimized such that the influence of dissolved solids on biological condition can be more accurately determined?
- 2) Is there an association between benthic macroinvertebrate community composition and TDS/component ion/SC level?
- 3) What is the ionic composition of TDS in streams of this region?
- 4) Does the ionic composition of TDS influence the association between TDS/component ion/SC and benthic macroinvertebrate community composition?

- 5) What level of TDS/component ion/SC is associated with benthic macroinvertebrate community composition effects as defined by VASCI score < 60?
- 6) What TDS/component ion/specific conductance levels are associated with absence of benthic macroinvertebrate genera using a taxa sensitivity distribution approach with field data?

Twenty-two first- and second-order streams (Strahler 1957) within the Virginia portion of Ecoregion 69 (Omernik 1987) were selected for study that had elevated TDS, where non-TDS factors were of reference-quality, with no detectable influence from poor habitat quality or toxic trace metals. Benthic macroinvertebrate and water quality samples were collected up to four times during the Spring (March through May) of 2009 and 2010, and Fall (September through November) of 2008 and 2009 biological index periods (VDEQ 2008). Benthic macroinvertebrate collections followed the single-habitat (riffle-run) approach (VDEQ 2008), which is based on U.S. EPA Rapid Bioassessment Protocols (Barbour et al. 1999).

Streamwater temperature, dissolved oxygen (DO), SC (at 25 °C), and pH were measured *in situ* with a calibrated handheld multi-probe meter. Single grab samples of streamwater were collected for measurement of TDS, alkalinity/HCO₃⁻, dissolved SO₄²⁻, Cl⁻, Ca²⁺, Mg²⁺, K⁺, Na⁺, and all species of dissolved Al, Cu, Fe, Mn, Se, and Zn (APHA 2005).

Analyses of water quality-biota associations focused on SC, TDS, and $SO_4^{2^-}$, because Spearman correlation analysis revealed that those are the water quality measures found to be most highly correlated with biological condition at the study sites. Ordinary least squares (OLS) and quantile linear regression analyses were conducted using VASCI scores versus transformed (natural log) values for water quality measurements. Field sensitivity distributions were created for SC, TDS, and $SO_4^{2^-}$ using the maximum field concentration at which each genus was observed. Observed effect concentrations (OEC_X) were then calculated, which were water quality concentrations above which X% of reference-site genera were not observed.

Mean relative ionic composition of streamwater at reference sites was dominated on a mass basis by HCO_3^- (43%) and SO_4^{2-} (26%), followed by Ca^{2+} , Cl^- , Na^+ , Mg^{2+} , and K^+ . Mean dissolved ion composition of streamwater at test sites was dominated on a mass basis by SO_4^{2-} (46%) and HCO_3^- (27%), followed by Ca^{2+} , Mg^{2+} , and Na^+ . At test sites, Cl^- and K^+ each comprised approximately 1% of total ion concentration.

As TDS and associated water quality measures increased above reference-site levels, the probability of observing biological effects increased. Biological effects, as defined by VASCI score < 60, were observed with increasing probability from 0% at \leq 190 mg/L TDS to 100% at \geq 1,108 mg/L TDS, with 50% probability of effects observed at 422 mg/L TDS. Effect probabilities of 0, 50, and 100% were associated with SC values of 332, 625, and 1,366 μ S/cm, respectively. Sulfate concentrations of 70, 219, and 849 mg/L were associated with 0, 50, and 100% probabilities of effect, respectively. Construction of genus-level FSD curves revealed similar OEC_X values regardless of season. Higher TDS levels were associated with observance of fewer taxa. Results were derived using taxa observed in \geq 4 samples in order to limit influence from rare taxa, but the method is sensitive to the number of taxa included. Concentrations of

TDS from 411 to 281 mg/L were associated with observance of 80 to 95%, respectively, of taxa present in reference samples. Specific conductance levels from 647 to 465 μ S/cm were associated with observance of 80 to 95%, respectively, of reference taxa,. Sulfate concentrations from 250 to 160 mg/L were associated with observance of 80 to 95%, respectively, of reference taxa.

Salt sensitivity varied among groups at multiple taxonomic levels. At the order level, genera of the typically salt-sensitive order Ephemeroptera exhibited lower MFCs than genera from other orders. Trichoptera genera had the second lowest MFCs. Orders Plecoptera and Diptera were similarly sensitive to SC, being observed at higher MFCs than other orders.

6.2 Conclusions

The influence of dissolved solids was effectively isolated in a survey of biological response to elevated TDS in headwater streams in Virginia's Central Appalachian coalfield region. Family-level richness of the benthic macroinvertebrate orders Ephemeroptera, Plecoptera, and Trichoptera declined with increasing TDS, as did overall richness, Ephemeroptera abundance, scraper abundance, and VASCI score. The test streams in this study were similarly dominated by $SO_4^{2^-}$ and HCO_3^- , such that no evaluation could be made of the influence of ionic composition on relationships between water quality measures and biological condition. Biological effects, as defined by VASCI score < 60, were associated with TDS, with an increasing probability of effects as TDS concentration increased. However, associations between these water quality measures and VASCI score were variable, with approximately 47% of the variance explained by ordinary least squares regression. It is not evident from the data whether the biological condition observed was the result of concurrent water quality or whether organisms were influenced by higher levels of dissolved solids at some time prior to sampling, potentially during more-sensitive early life stages. More-frequent water quality monitoring could be employed to answer this question.

The SSD approach can be used with field data to identify TDS levels that are associated with low observation frequency of benthic macroinvertebrate genera in headwater streams of Virginia's Central Appalachian coalfield region. Results observed here suggest that the FSD reflects salt sensitivity of benthic macroinvertebrate genera, but we do not interpret OEC_X values as toxic levels because many TDS-sensitive taxa occurred infrequently in samples with salt concentrations below the MFC field concentration for that genus. The fact that taxa were not observed at concentrations above the MFC indicates salt sensitivity, although likely not at the precise concentration defined by the MFC. However, the OEC_X values derived here should be considered as estimates, because there were relatively uncommon taxa included in the analysis. The general applicability of these findings is also limited by the small number of sites sampled (28). This suggests that further study of additional streams in the region would likely increase the number of genera included, and allow better determination of which genera are rare, thus improving the accuracy of the FSD method for defining TDS sensitivities.

It is important to note factors that should be considered when interpreting these results. Interpretation of these results is limited because the study design was not statistically unbiased in the manner by which sites were selected. A strict, targeted approach to site selection was employed in order to isolate TDS effects. In that way, this study was less like a spatially-

balanced probabilistic survey and more similar to a laboratory toxicity test where a gradient of treatment levels are assigned to experimental units free from influence by confounding factors. However, specific treatment levels were not controlled in this study and thus the frequency distribution of observations is not even across the gradient of TDS. Multiple sampling visits were made to an increasing number of sites each sample seasons; thus, the data set is not seasonally balanced. Despite these limitations, these results provide strong support for the use of the OECs for TDS and/or a highly correlated measure such as SC or SO₄²⁻ as a water quality measure that can be interpreted as a level of dissolved solids above which aquatic life effects are increasingly probable in headwater streams of Virginia's Central Appalachian coalfield region.

7.0 LITERATURE CITED

- American Public Health Association (APHA). 2005. Standard methods for the examination of water and wastewater. 21st ed. American Public Health Assoc., Washington, DC.
- Barbour, M.T., J. Gerritsen, and B.D. Snyder and J.B. Stribling. 1999. Rapid bioassessment protocols for use in streams and rivers; periphyton, benthic macroinvertebrates, and fish 2nd edition. EPA 841-B-99-002. U.S. Environmental Protection Agency, Office of Water, Washington, D.C.
- Bodkin, R., J. Kern, P. McClellan, A. Butt, C. Martion, 2007. Limiting total dissolved solids to protect aquatic life. Journal of Soil and Water Conservation 62(3): 57A-61A.
- Burton, J. and J. Gerritsen. 2003. A Stream Condition Index for Virginia Non-Coastal Streams. Report prepared for Virginia DEQ and US EPA by Tetra-Tech, Inc. Owings Mills, Maryland.
- Cade, B.S., and B.R. Noon. 2003. A gentle introduction to quantile regression for ecologists. Front. Ecol. Environ. 1(8): 412–420.
- Chambers, D. B., and T. Messinger. 2001. Benthic invertebrate communities and their responses to selected environmental factors in the Kanawha River Basin, West Virginia, Virginia, and North Carolina. Water-Resources Investigations Report 01-4021. US Geological Survey. Charleston, West Virginia.
- Chapman, P. M., H. Bailey, and E. Canaria. 2000. Toxicity of total dissolved solids associated with two mine effluents to Chironomid larvae and early life stages of rainbow trout. Environmental Toxicology and Chemistry. 19:210–214.
- Freund, J. G., and J. T. Petty. 2007. Response of fish and macroinvertebrate bioassessment indices to water chemistry in a mined Appalachian watershed. Environmental Management 39:707–720.
- Gerritsen, J., J. Burton, and M. T. Barbour. 2000. A Stream Condition Index for West Virginia Wadeable Streams. Prepared for US EPA by Tetra-Tech, Inc. Owings Mills, Maryland.
- Goetsch, P.-A., C.G. Palmer. 1997. Salinity Tolerances of Selected Macroinvertebrates of the Sabie River, Kruger National Park, South Africa. Arch. Environ. Contam. Toxicol. 32, 32–41
- Green, J., M. Passmore, and H. Childers. 2000. A survey of the condition of streams in the primary region of mountaintop mining/valley fill coal mining. Appendix in Mountaintop mining/valley fills in Appalachia. Final programmatic environmental impact statement. Region 3, US EPA. Philadelphia, Pennsylvania.

- Hartman, K. J., M. D. Kaller, J. W. Howell, and J. A. Sweka. 2005. How much do valley fills influence headwater streams? Hydrobiologia 532:91–102.
- Howard, H. S., B. Berrang, M. Flexner, G. Pond, and S. Call. 2001. Kentucky mountaintop mining benthic macroinvertebrate survey. Appendix in Mountaintop mining/valley fills in Appalachia. Final programmatic environmental impact statement. Region 3, US EPA. Philadelphia, Pennsylvania.
- Illinois Environmental Protection Agency. 2001. Rulemaking Proposal, Exhibit S, <u>In the Matter</u> of: Water Quality Triennial Review: Amendments to 35 Adm. Code 302.105, 302.208(e)-(g), 302.504(a), 302.575(d), 309.141(h); and Proposed 35 Ill. Adm. Code 301.267, <u>301.313, 301.413, 304.120, and 309.157</u>, R02-11 (Rulemaking - Water)(filed with the Pollution Control Board on November 9, 2001).
- Kefford B.J. D. Nugegoda, L. Zalizniak, E. J. Fields, K. L. Hassell. 2007. The salinity tolerance of freshwater macroinvertebrate eggs and hatchlings in comparison to their older life-stages: a diversity of responses. Aquatic Ecology 41:335–348.
- Kefford, B. J., A. Dalton, C.J. Palmer, D. Nugegoda. 2004. The salinity tolerance of eggs and hatchlings of selected aquatic macroinvertebrates in south-east Australia and South Africa. Hydrobiologia. 517, 179-192.
- Kefford, B.J. 1998. The relationship between electrical conductivity and selected macroinvertebrate communities in four river systems of south-west Victoria, Australia. International Journal of Salt Lake Research 7: 153-170.
- Kennedy, A. J., D. S. Cherry, and R. J. Currie. 2003. Field and laboratory assessment of a coal processing effluent in the Leading Creek watershed, Meigs County, Ohio. Archives Environmental Contamination and Toxicology 44:324–331.
- Kennedy, A.J., Cherry, DS, and Currie RJ. 2004. Evaluation of ecologically relevant bioassays for a lotic system impacted by a coal-mine effluent, using *Isonychia*. Environmental Monitoring and Assessment 95:37–55.
- Kennedy, A.J., D.S. Cherry, C.E. Zipper. 2005. Evaluation of ionic contribution to the toxicity of a coal-mine effluent using *Ceriodaphnia dubia*. Arch. Environ. Contam. Toxicol. 49, 155–162.
- Leland H.V, Fend SV. 1998. Benthic invertebrate distributions in the San Joaquin River, California, in relation to physical and chemical factors. Canadian Journal of Fisheries and Aquatic Sciences 55: 1051–1067.
- McCulloch, W.L., W.L. Goodfellow Jr., and J.A. Black. 1993. Characterization, identification and confirmation of total dissolved solids as effluent toxicants. Environmental Toxicology and Risk Assessment. 2: 213-227.

- Merricks, T. C., D. S. Cherry, C. E. Zipper, R. J. Currie, and T. W. Valenti. 2007. Coal mine hollow fill and settling pond influences on headwater streams in southern West Virginia, USA. Environmental Monitoring and Assessment 129:359–378.
- Mount, D. R., J. M. Gulley, J. R. Hockett, T. D. Garrison, J. M. Evans. 1997. Statistical models to predict the toxicity of major ions to *Ceriodaphnia dubia, Daphnia magna,* and fathead minnows (*Pimephales promelas*). Environmental Toxicology and Chemistry 16:2009– 2019.
- Omernik, J. M. 1987. Map Supplement: Ecoregions of the Conterminous United States. Annals of the Association of American Geographers 77(1): 118-125.
- Paul, J.F., and M.E. McDonald. 2005. Development of empirical, geographically specific water quality criteria: a conditional probability analysis approach. American Water Resources Association 41(5):1211-1223.
- Paybins, K.S., T. Messinger, J.H. Eychaner, D.B. Chambers, and M.D. Kozar. 2000. Water Quality in the Kanawha–New River Basin West Virginia, Virginia, and North Carolina, 1996–98: U.S. Geological Survey Circular 1204, 32 p., available at http://pubs.water.usgs.gov/circ1204/
- Piscart, C., P. Usseglio-Polatera, J.-C. Moreteau, J.N. Beisel. 2006. The role of salinity in the selection of biological traits of freshwater invertebrates. Arch. Hydrobiol. 166 2 185–198.
- Pond, G. J. 2004. Effects of surface mining and residential land use on headwater stream biotic integrity in the eastern Kentucky coalfield region. Kentucky Department of Environmental Protection, Division of Water. Frankfort, Kentucky.
- Pond, G.J. 2010. Patterns of Ephemeroptera taxa loss in Appalachian headwater streams (Kentucky, USA). Hydrobiologia, 641:185–201. DOI 10.1007/s10750-009-0081-6.
- Pond, G. J., and S. E. McMurray. 2002. A macroinvertebrate bioassessment index for headwater streams in the eastern coalfield region, Kentucky. Kentucky Department of Environmental Protection, Division of Water. Frankfort, Kentucky.
- Pond, G. J., M. E. Passmore, F. A. Borsuk, L. Reynolds, and C. J. Rose. 2008. Downstream effects of mountaintop coal mining: comparing biological conditions using family- and genus-level macroinvertebrate bioassessment tools. J. N. Am. Benthol. Soc. 2008 27(3):717–737.
- Posthuma, L., G.W. Suter II, T.P. Traas, eds. 2002. Species sensitivity distributions in ecotoxicology. Boca Raton, FL. Lewis Publishers.

- Soucek, D. J., and A. J. Kennedy. 2005. Effects of hardness, chloride, and acclimation on the acute toxicity of sulfate to freshwater invertebrates. Environmental Toxicology and Chemistry 24:1204–1210.
- Stephan, C.E., D.I. Mount, D.J. Hanson, et al. (1985) Guidelines for deriving numerical National Water Quality Criteria for the protection of aquatic organisms and their uses. U.S. Environmental Protection Agency, Washington, D.C. PB85-227049.
- Strahler, A.N. 1957. Quantitative analysis of watershed geomorphology. Transactions of the American Geophysical Union 8 (6): 913–920.
- Suter, G.W. II, T. Traas, L. Posthuma. 2002. Issues and practices in the derivation and use of species sensitivity distributions. In: Posthuma, L., G.W. Suter II, T.P. Traas, eds. 2002. Species sensitivity distributions in ecotoxicology. Boca Raton, FL. Lewis Publishers. pp 437–474.
- Timpano, A.J. 2011. Levels of Dissolved Solids Associated With Aquatic Life Effects in Headwater Streams of Virginia's Central Appalachian Coalfield Region. M.S. Thesis. Virginia Tech, Blacksburg, Virginia.
- Timpano, A.J., S.H. Schoenholtz, D.J. Soucek, C.E. Zipper. 2010. Isolating effects of total dissolved solids on aquatic life in central Appalachian coalfield streams. p. 1284 -1302, in: Proceedings, National Meeting of the American Society of Mining and Reclamation.
- U.S. Environmental Protection Agency. 1976. Quality criteria for water ("Red Book"). Office of Water and Hazardous Materials. Washington, DC 20460. PB-263 943.
- U.S. Environmental Protection Agency. 1990. Biological Criteria. National Program Guidance for Surface Waters. Office of Water Regulations and Standards. Washington, DC 20460. EPA-440-5-90-004.
- U.S. Environmental Protection Agency. 2000. Stressor Identification Guidance Document. Office of Water, Office of Research and Development. Washington, DC 20460. EPA-822-B-00-025.
- U.S. Environmental Protection Agency. 2005. Mountaintop Mining/Valley Fills in Appalachia Final Programmatic Environmental Impact Statement. U.S. Environmental Protection Agency, Philadelphia, PA. EPA 9-03-R-05002.
- U.S. Environmental Protection Agency. 2010. A field-based aquatic life benchmark for conductivity in central appalachian streams. External review draft. National Center for Environmental Assessment. Office of Research and Development. Washington, DC 20460. EPA/600/R-10/023A
- U.S. Environmental Protection Agency. 2011. National Recommended Water Quality Criteria. available from:

http://water.epa.gov/scitech/swguidance/waterquality/standards/current/index.cfm. Accessed February 23, 2011.

- Vannote, R.L., and B.W. Sweeny. 1980. Geographic analysis of thermal equilibria: a conceptual model for evaluating the effect of natural and modified thermal regimes on aquatic insect communities. Am. Nat. (115): 667 695.
- Virginia Department of Environmental Quality (VDEQ). 2006a. Using Probabilistic Monitoring Data to Validate the Non-Coastal Virginia Stream Condition Index. Water Quality Monitoring, Biological Monitoring and Water Quality Assessment Programs. Richmond, Virginia. VDEQ Technical Bulletin WQA/2006-001.
- Virginia Department of Environmental Quality (VDEQ). 2006b. Standard Operating Procedures Manual for the Department of Environmental Quality Water Quality Monitoring and Assessment Program. Revision 16, 10/13/2006. Water Quality Monitoring and Assessment Programs. Richmond, Virginia.
- Virginia Department of Environmental Quality. 2008. Biological Monitoring Program Quality Assurance Project Plan for Wadeable Streams and Rivers. Water Quality Monitoring and Assessment Programs. Richmond, Virginia.
- Virginia Department of Environmental Quality. 2010a. Water Quality Monitoring Assessment Guidance for Y2010. Water Quality Monitoring and Assessment Programs. Richmond, Virginia.
- Virginia Department of Environmental Quality. 2010b. Ecological Data Application System. Water Quality Monitoring and Assessment Programs. Richmond, Virginia.
- Wheeler, J.R., E.P.M. Grista, K.M.Y. Leunga, D. Morritta, M. Crane. 2002. Species sensitivity distributions: data and model choice. Marine Pollution Bulletin 45:192–202.
- Williams W.D. 1987. Salinization of rivers and streams: An important environmental hazard. Ambio 16: 180-185.

APPENDIX A – RBP HABITAT ASSESSMENT SCORES

	Date	~			Site	Substrate/ Cover	Embeddedness	Velocity/ Depth	Sediment Deposition	Flow Status	Channel Alteration	Riffle Frequency	Bank Stability L	Bank Stability R	Bank Veg. Protection L	Bank Veg. Protection R	Riparian Veg. Width	Riparian Veg. Width	Total
Sample ID	Collected	Sample Seasor	Stream Name	Site ID	Туре	1.5	15	1.5	10	1.2	20	10	0	0	0	0	L	R	1.65
C20081116A	11/16/2008	Fall 2008	Birchfield Creek	BIR	Test	17	17	15	13	15	20	19	8	9	9	9	10	9	167
C20081121C	11/21/2008	Fall 2008	Burns Creek	BUR	Ref	19	10	15	15	14	20	19	8	8	9	9	10	10	172
C20081128A	11/28/2008	Fall 2008	Eastland Creek	EAS	Ref	20	16	16	13	17	20	19	0	0	8	8	10	10	179
C20081126B	11/26/2008	Fall 2008	Grape Branch	GRA	Test	18	10	10	14	15	20	19	8	8	9	9	0	10	162
C20081120B	11/20/2008	Fall 2008	Mill Branch Left Fork	MI	Test	16	14	15	12	15	20	19	8	7	9	9	10	8	161
C20081121B	11/21/2008	Fall 2008	Powell River	POW	Test	17	15	15	12	16	20	19	7	7	8	8	10	10	164
C20081126D	11/26/2008	Fall 2008	Spruce Pine Creek	SPC	Test	18	16	15	14	16	20	18	9	9	9	9	10	9	172
C20090522A	5/22/2009	Spring 2009	Birchfield Creek	BIR	Test	18	15	16	12	19	20	18	7	6	9	9	10	9	168
C20090522D	5/22/2009	Spring 2009	Burns Creek	BUR	Ref	20	17	20	16	20	20	18	9	9	9	9	10	10	187
C20090521A	5/21/2009	Spring 2009	Callahan Creek West Fork	CAW	Test	18	16	20	12	18	20	20	9	8	10	10	8	10	179
C20090522B	5/22/2009	Spring 2009	Clear Creek	CLE	Ref	20	16	18	13	19	20	20	9	9	10	10	9	10	183
C20090522C	5/22/2009	Spring 2009	Eastland Creek	EAS	Ref	20	17	15	15	19	20	20	9	9	10	10	10	10	184
C20090520C	5/20/2009	Spring 2009	Fawn Branch	FAW	Test	18	16	15	13	18	19	20	9	8	10	10	10	9	175
C20090514B	5/14/2009	Spring 2009	Fryingpan Creek	FRY	Test	19	16	15	11	18	20	20	9	9	10	10	10	10	177
C20090514A	5/14/2009	Spring 2009	Fryingpan Creek Right Fork	CIN	Test	18	15	16	12	20	20	20	/	/	10	9	10	0	170
C20090520B	5/20/2009	Spring 2009	Grape Branch	GPA	Test	10	10	20	13	10	20	20	07	0 5	10	10	9	10	1/4
C20090513A	5/13/2009	Spring 2009	Hurricane Fork	HUR	Test	15	14	15	12	18	20	17	7	7	8	8	9	6	158
C20090513D	5/13/2009	Spring 2009	Jess Fork	JES	Test	18	14	15	12	20	20	19	8	8	9	9	9	9	170
C20090610D	6/10/2009	Spring 2009	Laurel Branch	LAB	Test	17	17	15	12	15	20	16	7	7	10	10	10	10	166
C20090602B	6/2/2009	Spring 2009	Laurel Fork	LAU	Test	15	12	15	12	17	20	16	8	9	9	10	10	9	162
C20090521B	5/21/2009	Spring 2009	Mill Branch Left Fork	MIL	Test	18	13	15	12	18	20	19	7	9	10	10	10	10	171
C20090521C	5/21/2009	Spring 2009	Powell River	POW	Test	20	16	15	14	17	20	20	7	7	9	9	10	10	174
C20090513B	5/13/2009	Spring 2009	Race Fork UT	RAC	Test	17	16	15	14	19	20	16	9	9	9	9	9	10	172
C20090520A	5/20/2009	Spring 2009	Roll Pone Branch	ROL	Test	17	12	15	11	15	20	19	7	7	10	10	10	10	163
C20090513C	5/13/2009	Spring 2009	Spring Branch	SPR	Test	18	15	15	13	17	20	19	8	8	10	10	10	10	173
C20090512A	5/12/2009	Spring 2009	Spruce Pine Creek	SPC	Test	19	15	15	14	16	20	20	6	6	10	10	10	10	171
C20091030C	10/30/2009	Fall 2009	Birchileid Creek	DID	Def	10	15	15	12	18	20	18	0	10	8	8	10	8 10	100
C20091009E	11/6/2009	Fall 2009	Callaban Creek West Fork	CAW	Test	19	18	16	17	18	20	18	9	0	10	10	10	10	165
C20091106A	11/6/2009	Fall 2009	Cane Branch	CAN	Test	10	14	17	13	18	20	17	7	7	8	8	10	10	166
C20091009C	10/9/2009	Fall 2009	Clear Creek	CLE	Ref	19	17	19	16	20	20	20	9	10	10	10	10	10	190
C20091009D	10/9/2009	Fall 2009	Eastland Creek	EAS	Ref	19	17	17	17	17	20	20	9	9	10	10	10	10	185
C20091106D	11/6/2009	Fall 2009	Fawn Branch	FAW	Test	17	13	16	13	18	20	18	9	9	9	9	10	9	170
C20091031D	10/31/2009	Fall 2009	Fryingpan Creek	FRY	Test	18	15	16	14	17	20	19	9	9	10	10	10	10	177
C20091031C	10/31/2009	Fall 2009	Fryingpan Creek Right Fork	RFF	Test	18	16	16	14	15	20	18	8	8	10	10	10	9	172
C20091106C	11/6/2009	Fall 2009	Gin Creek	GIN	Test	16	12	16	12	18	20	18	8	8	8	8	10	7	161
C20091107E	11/7/2009	Fall 2009	Grape Branch	GRA	Test	17	14	16	13	18	20	16	9	9	9	9	10	10	170
C20091107B	11/7/2009	Fall 2009	Hurricane Fork	HUR	Test	16	11	15	11	15	20	18	8	8	9	9	10	10	160
C20091107A	11/7/2009	Fall 2009	Jess Fork	JES	Test	15	12	15	11	18	20	17	10	10	10	7	9	10	152
C20091030A	10/30/2009	Fall 2009	Kelly Branch LT	KUT	Test	17	15	18	12	20	20	17	10	10	10	9	10	10	170
C20091030B	10/31/2009	Fall 2009	Laurel Branch	LAB	Test	16	10	17	14	20	20	19	8	8	8	9	10	10	172
C20091106B	11/6/2009	Fall 2009	Laurel Fork	LAU	Test	20	15	17	14	20	20	19	9	9	10	10	10	10	183
C20091009A	10/9/2009	Fall 2009	Mill Branch Left Fork	MIL	Test	17	13	13	12	16	20	18	8	7	10	10	10	9	163
C20091009B	10/9/2009	Fall 2009	Powell River	POW	Test	19	15	15	14	20	20	20	7	9	10	10	10	10	179
C20091107C	11/7/2009	Fall 2009	Race Fork UT	RAC	Test	18	13	14	12	16	20	18	8	8	9	9	10	10	165
C20091030D	10/30/2009	Fall 2009	Richey Branch	RIC	Test	17	14	17	13	18	20	17	7	7	9	9	10	10	168
C20091030E	10/30/2009	Fall 2009	Richey Branch UT	RUT	Test	17	13	17	12	18	20	17	6	6	10	10	10	10	166
C20091031A	10/31/2009	Fall 2009	Roll Pone Branch	ROL	Test	17	12	15	12	16	20	19	8	8	9	9	10	10	165
C20091107D	11/7/2009	Fall 2009	Spring Branch	SPR	Test	17	13	16	12	17	20	17	7	8	7	8	10	10	162
C20091107F	11/7/2009	Fall 2009	Spruce Pine Creek	SPC	Test	17	15	17	13	17	20	18	10	10	10	10	10	10	1//
C20100520A	5/20/2010	Spring 2010	Birchileid Creek	DID	Def	17	14	15	12	20	20	19	0	8 10	9	9	10	9	109
C20100521C	5/25/2010	Spring 2010	Callaban Creek West Fork	CAW	Test	19	17	20	14	20	20	10	9	8	10	10	10	10	172
C20100525C	5/26/2010	Spring 2010	Cane Branch	CAN	Test	16	14	19	14	20	20	16	7	9	8	10	10	10	172
C20100521A	5/21/2010	Spring 2010	Clear Creek	CLE	Ref	19	18	20	15	20	20	19	, 9	10	10	10	10	10	190
C20100521D	5/21/2010	Spring 2010	Copperhead Branch	COP	Ref	18	15	10	12	20	20	19	10	10	10	10	10	10	174
C20100521E	5/21/2010	Spring 2010	Crooked Branch	CRO	Ref	17	13	17	13	20	20	17	8	9	10	10	10	10	174
C20100521B	5/21/2010	Spring 2010	Eastland Creek	EAS	Ref	19	18	16	15	20	20	18	10	8	10	10	10	10	184
C20100525B	5/25/2010	Spring 2010	Fawn Branch	FAW	Test	18	14	15	13	20	20	19	10	8	9	8	10	8	172
C20100520D	5/20/2010	Spring 2010	Fryingpan Creek	FRY	Test	18	14	15	13	20	20	18	9	10	10	10	10	10	177
C20100520E	5/20/2010	Spring 2010	Fryingpan Creek Right Fork	RFF	Test	16	13	15	12	20	20	18	9	10	9	10	6	10	168
C20100525A	5/25/2010	spring 2010	GIN Creek	GIN	rest	18	15	1/	15	20	20	18	ð	/	10	9	10	/	170

	Date		01. ID	Site	Substrate/ Cover	Embeddedness	Velocity/ Depth	Sediment Deposition	Flow Status	Channel Alteration	Riffle Frequency	Bank Stability L	Bank Stability R	Bank Veg. Protection L	Bank Veg. Protection R	Riparian Veg. Width	Riparian Veg. Width	Total
Sample ID	Collected	Sample Season Stream Name	Site ID	Туре												L	R	
C20100524B	5/24/2010	Spring 2010 Grape Branch	GRA	Test	19	16	17	14	20	20	19	8	10	10	10	10	10	183
C20100524C	5/24/2010	Spring 2010 Hurricane Fork	HUR	Test	16	12	14	9	17	20	16	7	6	10	10	10	10	157
C20100521G	5/21/2010	Spring 2010 Jess Fork	JES	Test	16	12	10	12	20	20	17	7	6	9	9	10	8	156
C20100519B	5/19/2010	Spring 2010 Kelly Branch	KEL	Test	18	15	19	13	20	20	19	8	8	10	10	10	10	180
C20100519C	5/19/2010	Spring 2010 Kelly Branch UT	KUT	Test	20	16	16	14	20	20	19	6	6	10	9	10	9	175
C20100520F	5/20/2010	Spring 2010 Laurel Branch	LAB	Test	16	13	15	13	20	17	16	8	8	8	8	8	8	158
C20100519D	5/19/2010	Spring 2010 Laurel Fork	LAU	Test	19	14	17	14	20	20	19	9	9	10	10	10	10	181
C20100521F	5/21/2010	Spring 2010 Middle Camp Bran	ch MCB	Ref	17	13	16	12	17	20	17	6	7	9	9	10	10	163
C20100519A	5/19/2010	Spring 2010 Mill Branch Left F	ork MIL	Test	16	14	16	13	19	20	17	8	8	9	9	10	9	168
C20100519E	5/19/2010	Spring 2010 Powell River	POW	Test	17	14	15	13	20	20	17	8	8	9	9	10	10	170
C20100524D	5/24/2010	Spring 2010 Race Fork UT	RAC	Test	19	17	15	12	16	20	19	8	9	9	9	10	10	173
C20100520B	5/20/2010	Spring 2010 Richey Branch	RIC	Test	19	13	17	11	20	20	20	7	8	10	10	8	10	173
C20100520C	5/20/2010	Spring 2010 Richey Branch UT	RUT	Test	19	15	14	12	20	20	19	6	4	9	8	10	8	164
C20100526B	5/26/2010	Spring 2010 Roll Pone Branch	ROL	Test	19	16	15	13	20	20	18	7	9	9	10	10	10	176
C20100524E	5/24/2010	Spring 2010 Spring Branch	SPR	Test	17	12	13	12	18	20	17	7	7	9	9	10	10	161
C20100524A	5/24/2010	Spring 2010 Spruce Pine Creek	SPC	Test	18	16	19	12	20	20	18	10	9	10	10	10	7	179

APPENDIX B – STREAMWATER CHEMISTRY DATA

Sample ID	Date Collected	Sample Season	n Stream Name	Site ID	Site Type	Temp	pН	DO	Specific Conductance	TDS	Cl-	SO42-	Total Alkali	HCO3-	Ca2+	K+	Mg2+	Na+	Al	Cu	Fe	Mn	Se	Zn
						°C		mg/L	µS/cm	mg/L	mg/L	mg/L	mg/L as	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	µg/L	µg/L	µg/L	μg/L	µg/L
C20081116A	11/16/2008	Fall 2008	Birchfield Creek	BIR	Test	7.04	7.61	11.56	755	556	8.4	233.3	153.2	178.1	75.3	4.9	55.0	27.9	< 2.8	< 8.9	52.4	< 1.7	< 4.9	< 37.3
C20081121C	11/21/2008	Fall 2008	Burns Creek	BUR	Ref	1.74	7.26	10.96	24	5	2.3	5.4	9.9	12.1	0.4	0.4	0.5	3.7	< 2.8	< 8.9	< 39.4	< 1.7	6.4	< 37.3
C20081128A	11/28/2008	Fall 2008	Clear Creek	CLE	Ref	3.98	6.64	0.67	21	5	0.9	4.3	9.3	11.4	2.0	0.6	0.7	1.0	< 2.8	< 8.9	< 39.4	< 1.7	6.3	< 37.3
C20081126B	11/26/2008	Fall 2008	Grape Branch	GRA	Test	4.16	7.63	10.80	546	352	6.0	204.6	63.3	77.3	53.5	2.3	21.5	45.3	< 2.8	< 8.9	< 39.4	< 1.7	< 4.9	< 37.3
C20081121A	11/21/2008	Fall 2008	Mill Branch Left Fork	MIL	Test	2.53	7.68	12.25	1183	862	2.0	213.1	165.6	187.5	158.7	5.4	66.9	36.4	< 2.8	< 8.9	410.9	160.3	7.5	< 37.3
C20081121B	11/21/2008	Fall 2008	Powell River	POW	Test	2.75	7.54	10.89	865	694	1.0	249.9	127.0	152.0	120.9	3.5	67.3	12.7	7.5	< 8.9	< 39.4	2.6	5.3	< 37.3
C20081126D	11/26/2008	Fall 2008	Spruce Pine Creek	SPC	Test	3.17	8.49	10.97	575	364	3.8	128.4	207.1	239.8	40.2	1.8	17.3	84.9	< 2.8	< 8.9	< 39.4	< 1.7	< 4.9	< 37.3
C20090522A	05/22/2009	Spring 2009	Birchfield Creek	BIR	Test	17.54	7.90	8.09	736	538	3.2	378.2	107.2	130.8	71.7	3.8	54.8	20.1	< 9.8	< 22.8	51.5	44.7	< 24.1	< 16.0
C20090522D	05/22/2009	Spring 2009 Spring 2009	Callahan Creek West Fork	CAW	Test	10.85	0.11 7.93	9.36	304	205	2.7	4.6	0.0 65.9	0.7 80.4	35.6	2.2	0.6 17.0	7.9	< 9.8 < 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090522B	05/22/2009	Spring 2009	Clear Creek	CLE	Ref	11.47	7.80	9.93	16	25	0.8	3.7	2.9	3.5	1.7	0.3	0.6	0.4	41.9	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090522C	05/22/2009	Spring 2009	Eastland Creek	EAS	Ref	11.67	6.85	10.21	21	26	0.8	3.2	5.7	7.0	2.7	0.4	0.7	0.5	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090520C	05/20/2009	Spring 2009	Fawn Branch	FAW	Test	13.50	8.02	nd	265	168	1.1	68.0	73.7	89.9	28.5	2.3	14.3	10.4	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090514B	05/14/2009	Spring 2009	Fryingpan Creek	FRY	Test	13.38	8.15	9.03	462	298	9.8	156.0	70.7	86.2	46.4	3.9	24.6	20.3	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090514A	05/14/2009	Spring 2009	Fryingpan Creek Right Fork	GIN	Test	13.02	8.45	9.55	607 706	361 470	/./ 85	152.1	158.5	192.6	46.2 32.4	2.8	19.9	0/.0 135.0	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090512B	05/12/2009	Spring 2009 Spring 2009	Grape Branch	GRA	Test	13.00	7.56	9.16	143	63	4.2	39.4	22.0	26.9	13.4	1.6	5.8	5.0	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090513A	05/13/2009	Spring 2009	Hurricane Fork	HUR	Test	12.10	7.26	9.68	490	290	1.4	220.9	32.1	39.1	45.2	2.9	33.4	9.4	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090513D	05/13/2009	Spring 2009	Jess Fork	JES	Test	12.14	6.57	10.17	757	567	1.4	456.2	4.2	5.1	85.1	3.1	50.5	10.8	22.1	< 22.8	74.8	787.9	< 24.1	116.0
C20090610D	06/10/2009	Spring 2009	Laurel Branch	LAB	Test	14.16	7.90	8.27	842	558	8.8	311.1	109.4	133.5	87.9	4.3	45.3	42.3	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090602B	06/02/2009	Spring 2009	Laurel Fork Mill Branch Loft Fork	LAU	Test	15.03	6.90 8.25	8.59	25	28	0.9	4.2	7.2	8.8	2.2	1.4	1.5	1.0	< 9.8	< 22.8	319.9	< 15.7	< 24.1	< 16.0
C20090521C	05/21/2009	Spring 2009	Powell River	POW	Test	13.99	7.95	8.55	970	792	1.9	531.4	115.6	141.0	119.9	4.2	75.4	19.5	15.6	< 22.8	72.0	< 15.7	< 24.1	< 16.0
C20090513B	05/13/2009	Spring 2009	Race Fork UT	RAC	Test	12.64	7.67	9.36	340	218	1.2	114.4	79.9	97.5	36.5	3.2	18.4	21.5	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090520A	05/20/2009	Spring 2009	Roll Pone Branch	ROL	Test	12.24	7.62	9.83	594	389	4.5	249.6	78.6	95.8	65.3	2.9	33.4	18.5	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090513C	05/13/2009	Spring 2009	Spring Branch	SPR	Test	13.21	7.51	7.81	339	205	1.1	138.0	38.8	47.3	36.0	2.2	24.0	3.3	< 9.8	< 22.8	< 22.2	< 15.7	< 24.1	< 16.0
C20090512A	05/12/2009	Spring 2009	Spruce Pine Creek	SPC	Test	14.99	7.73	9.75	332	174	5.7	109.3	45.6	55.6	29.0	1.9	14.9	18.5	40.8	< 22.8	24.3	61.5	< 24.1	< 16.0
C20091030C	10/09/2009	Fall 2009 Fall 2009	Burns Creek	BUR	Ref	14.58	6.50	8.36	21	12	2.0	4.2	1.2	140.0	1.2	4.2 0.3	40.5	19.4	< 8.0	< 12.9	< 64.9	52.9 6.7	< 16.1	12.0
C20091106A	11/06/2009	Fall 2009	Callahan Creek West Fork	CAW	Test	7.81	7.31	10.75	292	187	0.7	88.2	68.4	83.4	33.1	2.1	14.9	6.8	9.4	< 12.9	< 64.9	6.3	< 16.1	12.6
C20091106E	11/06/2009	Fall 2009	Cane Branch	CAN	Test	10.01	7.96	9.13	1462	1108	5.1	679.4	202.0	246.4	141.8	7.4	97.0	76.8	25.8	< 12.9	< 64.9	86.7	< 16.1	10.3
C20091009C	10/09/2009	Fall 2009	Clear Creek	CLE	Ref	13.81	7.25	8.39	20	14	0.5	3.1	6.3	7.7	2.1	0.4	0.6	0.6	35.1	< 12.9	< 64.9	12.2	< 16.1	10.9
C20091009D	10/09/2009	Fall 2009	Eastland Creek	EAS	Ref	13.79	7.15	7.69	22	10	0.4	2.8	8.0	9.7	2.8	0.4	0.7	0.6	< 8.6	< 12.9	< 64.9	5.1	< 16.1	10.3
C20091106D	10/31/2009	Fall 2009 Fall 2009	Fawn Brancn Fryingpan Creek	FAW	Test	9.55	7.49	8.52 9.05	402	263	11.2	07.4 100.9	81.5 93.1	99.4 113.6	29.9	2.2	13.7	27.0	< 8.0 < 8.6	< 12.9	< 64.9 < 64.9	8.1 6.6	< 16.1	12.8
C20091031C	10/31/2009	Fall 2009	Fryingpan Creek Right Fork	RFF	Test	12.90	7.41	8.37	340	218	5.9	76.7	90.5	110.4	29.0	2.4	11.9	29.1	< 8.6	< 12.9	< 64.9	10.4	< 16.1	10.2
C20091106C	11/06/2009	Fall 2009	Gin Creek	GIN	Test	11.14	8.07	9.21	656	411	8.5	112.9	232.9	280.0	28.7	3.7	11.8	117.1	< 8.6	< 12.9	< 64.9	7.4	< 16.1	13.7
C20091107E	11/07/2009	Fall 2009	Grape Branch	GRA	Test	8.35	7.27	10.12	339	202	4.2	119.7	51.6	62.9	32.1	2.0	13.3	21.0	< 8.6	< 12.9	< 64.9	6.3	< 16.1	11.4
C20091107B	11/07/2009	Fall 2009	Hurricane Fork	HUR	Test	7.31	7.21	11.06	383	258	1.1	166.5	34.2	41.7	36.0	2.5	27.3	7.7	8.7	< 12.9	< 64.9	17.2	< 16.1	11.6
C20091107A	10/30/2009	Fall 2009 Fall 2009	Jess Fork Kelly Branch	JES	Test	6.74 11.67	7.22	0.34	682 873	493 615	1.1	340.4 412.7	49.3	60.2 107.4	81.6	3.5 4 0	45.2 59.6	9.9	20.0	< 12.9	< 64.9	9.5	< 16.1	10.7
C20091030B	10/30/2009	Fall 2009	Kelly Branch UT	KUT	Test	12.71	7.96	9.69	1366	1021	1.9	629.3	173.1	211.2	151.8	7.6	82.4	55.3	17.2	< 12.9	< 64.9	12.2	22.9	11.3
C20091031B	10/31/2009	Fall 2009	Laurel Branch	LAB	Test	13.01	7.63	9.19	784	553	3.9	282.7	124.7	152.2	82.0	4.3	41.9	46.5	< 8.6	< 12.9	< 64.9	11.2	< 16.1	11.1
C20091106B	11/06/2009	Fall 2009	Laurel Fork	LAU	Test	7.04	7.23	10.15	20	33	0.5	4.3	6.0	7.3	1.5	0.6	1.1	0.7	12.4	< 12.9	80.8	10.6	< 16.1	15.9
C20091009A	10/09/2009	Fall 2009	Mill Branch Left Fork	MIL	Test	15.00	7.37	8.42	845	588	1.1	350.8	133.6	163.0	104.4	5.1	49.6	15.2	15.3	< 12.9	71.3	93.0	17.2	13.5
C20091009B	10/09/2009	Fall 2009 Fall 2009	Powell River	POW	Test	0.31	7.46	8.93	1087	/51 273	0.5	4/7.2	126.7 81.4	154.6	122.7	4.5	72.0	9.7	11.4	< 12.9	< 64.9	14.1	16.0	17.4
C20091030D	10/30/2009	Fall 2009	Richev Branch	RIC	Test	13.49	7.93	8.49	1670	1378	5.8	849.0	190.8	232.8	183.9	6.5	160.6	14.6	36.4	< 12.9	< 64.9	19.7	< 16.1	10.2
C20091030E	10/30/2009	Fall 2009	Richey Branch UT	RUT	Test	12.85	7.63	8.77	545	388	4.6	219.4	75.1	91.6	46.4	4.2	50.1	5.5	9.9	< 12.9	< 64.9	11.7	< 16.1	10.5
C20091031A	10/31/2009	Fall 2009	Roll Pone Branch	ROL	Test	12.97	7.20	8.77	652	462	3.2	272.4	83.4	101.8	76.5	3.9	39.6	16.0	< 8.6	< 12.9	< 64.9	5.8	< 16.1	11.1
C20091107D	11/07/2009	Fall 2009	Spring Branch	SPR	Test	7.68	7.30	10.69	274	156	0.8	92.3	53.3	65.1	27.6	1.9	18.3	3.8	30.7	< 12.9	69.9	8.7	< 16.1	10.8
C2009110/F	05/20/2010	Fall 2009 Spring 2010	Spruce Pine Creek	SPC	Test	9.01	7.79	10.05	468	281	3.4	108.2	142.9	174.3	37.0	1.9	15.7	53.8	< 8.6	< 12.9	< 64.9	14.7	< 16.1	10.7
C20100520A	05/21/2010	Spring 2010	Burns Creek	BUR	Ref	12.10	7.01	9.71	23	14	2.9	4.4	-2.2	-2.7	1.3	0.3	43.5	2.0	20.0	< 17.7	< 32.3	7.9	< 17.1	< 7.4
C20100525C	05/25/2010	Spring 2010	Callahan Creek West Fork	CAW	Test	14.37	7.54	8.67	282	112	0.6	82.6	68.4	83.4	32.6	2.0	13.2	5.1	23.2	< 17.7	< 32.3	6.9	17.6	< 7.4
C20100526A	05/26/2010	Spring 2010	Cane Branch	CAN	Test	12.86	8.36	8.50	1282	970	0.7	623.4	192.0	234.3	133.4	6.4	98.5	52.6	27.3	< 17.7	42.7	90.1	24.1	< 7.4
C20100521A	05/21/2010	Spring 2010	Clear Creek	CLE	Ref	11.97	6.67	9.81	18	8	0.5	3.4	6.3	7.6	2.0	0.3	0.6	0.5	37.4	< 17.7	< 32.3	8.3	< 17.1	< 7.4
C20100521D	05/21/2010	Spring 2010	Copperhead Branch	COP	Ref	13.24	7.55	8.33	116	76	1.3	22.1	36.1	44.1	12.0	1.4	0.5	1.7	< 12.6	< 17.7	< 32.3	8.0	< 17.1	< 7.4
C20100521E	05/21/2010	Spring 2010 Spring 2010	Eastland Creek	EAS	Kei Ref	14.40 11.87	7.48 7.11	9.40 9.72	04 20	40	5.5 0.5	9.2 3 2	12.2	14.9 9.6	3.3 1.6	1.5	2.0 0.6	0.8	13.0	< 17.7	54.5 < 32 3	< 0.0 < 6.6	18.4	< 1.4 < 7.4
C20100525B	05/25/2010	Spring 2010 Spring 2010	Fawn Branch	FAW	Test	14.28	7.66	8.53	263	94	0.7	59.0	82.7	100.9	28.2	2.0	11.8	8.5	15.3	< 17.7	67.7	7.8	< 17.1	< 7.4
C20100520D	05/20/2010	Spring 2010	Fryingpan Creek	FRY	Test	14.24	8.03	9.12	300	184	5.5	89.5	57.7	70.4	28.7	1.7	12.8	12.5	15.8	< 17.7	< 32.3	< 6.6	< 17.1	< 7.4
C20100520E	05/20/2010	Spring 2010	Fryingpan Creek Right Fork	RFF	Test	14.33	8.25	9.33	357	228	3.9	90.3	88.7	108.2	28.6	1.9	9.9	33.8	16.8	< 17.7	< 32.3	< 6.6	< 17.1	< 7.4
C20100525A	05/25/2010	Spring 2010	Gin Creek	GIN	Test	15.18	8.23	8.86	644	348	5.8	113.5	236.5	284.6	28.5	3.6	9.5	111.3	< 12.6	< 17.7	< 32.3	6.7	< 17.1	< 7.4
C20100524B	05/24/2010	spring 2010	Grape Branch	GKA	rest	15.47	1.22	8.89	226	106	3.4	69.6	58.8	47.3	18.8	1.7	4.6	14.4	17.9	< 17.7	46.0	< 6.6	< 17.1	< /.4
									Specific				Total											
------------	----------------	---------------	-----------------------	---------	-----------	-------	------	-------	-------------	------	------	-------	------------	-------	-------	------	-------	------	--------	--------	--------	-----------	--------	-------
Sample ID	Date Collected	Sample Season	Stream Name	Site ID	Site Type	Temp	pН	DO	Conductance	TDS	Cl-	SO42-	Alkali	HCO3-	Ca2+	K+	Mg2+	Na+	Al	Cu	Fe	Mn	Se	Zn
-		-				°C		mg/L	µS/cm	mg/L	mg/L	mg/L	mg/L as	mg/L	mg/L	mg/L	mg/L	mg/L	μg/L	µg/L	µg/L	$\mu g/L$	µg/L	μg/L
C20100524C	05/24/2010	Spring 2010	Hurricane Fork	HUR	Test	15.62	7.32	9.17	422	248	0.7	178.1	39.5	48.1	39.2	2.4	28.6	8.4	20.1	< 17.7	33.4	16.5	17.5	< 7.4
C20100521G	05/21/2010	Spring 2010	Jess Fork	JES	Test	13.55	7.25	9.91	568	396	0.3	280.7	27.5	33.5	63.4	2.4	37.2	6.9	50.5	< 17.7	100.5	264.9	< 17.1	35.4
C20100519B	05/19/2010	Spring 2010	Kelly Branch	KEL	Test	12.74	7.87	8.93	769	546	1.7	356.2	86.9	106.0	88.1	4.3	56.5	10.2	23.5	< 17.7	< 32.3	19.0	< 17.1	< 7.4
C20100519C	05/19/2010	Spring 2010	Kelly Branch UT	KUT	Test	13.51	8.25	9.02	1061	784	2.1	494.2	140.2	171.1	120.2	6.2	72.6	35.4	39.3	18.0	85.5	22.1	28.3	7.8
C20100520F	05/20/2010	Spring 2010	Laurel Branch	LAB	Test	13.70	7.91	9.44	413	252	2.0	137.7	79.9	97.4	43.0	2.6	20.8	16.1	36.9	< 17.7	55.7	12.1	< 17.1	< 7.4
C20100519D	05/19/2010	Spring 2010	Laurel Fork	LAU	Test	13.11	7.78	8.76	25	16	0.5	5.2	6.9	8.4	2.0	0.7	1.4	0.8	20.3	< 17.7	83.8	15.2	< 17.1	< 7.4
C20100521F	05/21/2010	Spring 2010	Middle Camp Branch	MCB	Ref	13.68	7.26	10.10	44	24	0.7	11.3	8.8	10.7	2.1	1.1	1.9	1.8	< 12.6	< 17.7	< 32.3	< 6.6	< 17.1	< 7.4
C20100519A	05/19/2010	Spring 2010	Mill Branch Left Fork	MIL	Test	13.16	8.04	9.07	597	398	1.4	221.2	112.1	136.8	70.3	3.7	39.8	8.8	24.5	< 17.7	40.0	56.8	< 17.1	< 7.4
C20100519E	05/19/2010	Spring 2010	Powell River	POW	Test	12.41	7.95	nd	707	492	1.0	305.7	93.8	114.5	83.2	3.2	51.4	5.9	28.6	< 17.7	< 32.3	12.7	< 17.1	< 7.4
C20100524D	05/24/2010	Spring 2010	Race Fork UT	RAC	Test	15.39	7.77	9.08	417	230	0.8	127.1	99.3	121.1	40.8	2.3	19.3	23.4	18.8	< 17.7	< 32.3	< 6.6	< 17.1	< 7.4
C20100520B	05/20/2010	Spring 2010	Richey Branch	RIC	Test	12.27	8.23	9.54	1335	1070	15.1	768.6	163.0	198.9	137.1	4.4	112.2	9.9	23.0	< 17.7	< 32.3	19.3	< 17.1	< 7.4
C20100520C	05/20/2010	Spring 2010	Richey Branch UT	RUT	Test	13.08	8.10	9.40	485	316	nd	nd	60.6	73.9	39.7	2.3	44.9	2.8	20.2	< 17.7	< 32.3	7.0	< 17.1	< 7.4
C20100526B	05/26/2010	Spring 2010	Roll Pone Branch	ROL	Test	16.01	8.04	8.26	476	278	7.7	191.7	72.1	87.9	55.8	2.5	29.7	12.9	27.2	< 17.7	47.7	< 6.6	< 17.1	< 7.4
C20100524E	05/24/2010	Spring 2010	Spring Branch	SPR	Test	15.66	7.51	8.69	329	164	0.6	126.0	49.4	60.3	34.0	2.1	22.0	0.8	16.8	< 17.7	< 32.3	< 6.6	< 17.1	< 7.4
C20100524A	05/24/2010	Spring 2010	Spruce Pine Creek	SPC	Test	14.26	7.50	10.34	364	190	12.8	106.9	81.0	98.8	31.7	1.8	12.7	27.2	36.3	< 17.7	91.0	32.8	< 17.1	< 7.4

APPENDIX C – FAMILY-LEVEL BENTHIC MACROINVERTEBRATE DATA

							ae (A)	}	9		0				ae				0		e lae							dae							ae		
				a e	ae	0	gonida idae (rlidae	astrida lae		odidae e		e allidae	idae	matida	ae	iidae ina	lidae	chida lidae	dae	omatid ebiidae	e	lidae	eta	dae	e	midae	idae opodie	lae	yiidae yidae		appilli	9	e vidae	rygida		
	Date Sample	Site	Site	shnida eletid	ericid	oniidae	atopo. ronon	orope	duleg	idae	ichop opida	idae	pidida	lemeri	ososo	bihqu	otagen dracar	lrophi	droptil	nychii	oidoste otophle	trida	inephi	gocha	toperli	lidae lodida	lopota	ygane ycenti	phenic	chom	alidae	/acopi lidae	biilu	atiomy	niopte	noidae	iidae
Sample ID	Collected Season Stream Name	ID	Туре	Aes Am	Ath B~	Car D	Cer Chi	CPI	ů ů	Dix	G Á	, Eln	Em	Ept 1	- Ö	ê	Hel	Hy	Ϋ́ Ή	Iso	P P	Let	Lin	Oli	Pel	Per Per	Phi	Phr	Pse	Psy Pte	Pyr	Sia	Sin	Tat	Tae	Uer	Vel
F110B20081116A F110B20081121C	11/16/2008 Fall 2008 Birchfield Creek 11/21/2008 Fall 2008 Burns Creek	BIR	Test			89 19	2 4 4	4				4	10	0		1	3		9 4		2				1	3 2	3		1			1					
F110B20081128A	11/28/2008 Fall 2008 Clear Creek	CLE	Ref		1	1 6	3 4	1				10	1 1	1		•	6		4		1 21	3			·	2 2	5	2	•			2	2		9		
F110B20081128B	11/28/2008 Fall 2008 Eastland Creek	EAS	Ref	1	1	1 5	2 1	1 2				9	1			1	2		5		3	16	3	1		1	2		1	4		1	21		2	2 3	
F110B20081126B F110B20081121A	11/20/2008 Fall 2008 Grape Branch 11/21/2008 Fall 2008 Mill Branch Left Fork	MIL	Test	2		59 80	1 4						1			1	2		44 13			1	1 2	2 1		5	2					2			1	1	
F110B20081121B	11/21/2008 Fall 2008 Powell River	POW	Test			55	3					2							24			6			2		3										
F110B20081126D	11/26/2008 Fall 2008 Spruce Pine Creek 05/22/2009 Spring 2009 Birchfield Creek	SPC	Test			41	1 10	0	1			6	2						34 2			1	5	5		1	7		1		-	2	20		6		
F110B20090522D	05/22/2009 Spring 2009 Burns Creek	BUR	Ref				2 21	8	-				1				7		4			22	2	21	3	2	1	2				5	20		:	;	
F110B20090521A	05/21/2009 Spring 2009 Callahan Creek West Fork	CAW	Test	6	1	1	4	1				1	5	5			5					32	3	7	2	1 11			1			1					
F110B20090522B F110B20090522C	05/22/2009 Spring 2009 Clear Creek 05/22/2009 Spring 2009 Eastland Creek	EAS	Ref	1	1	2	4				1	6	6	9 5			15		2		2	27 40	4	+ 5	2	1 2	5		1	4	-	5 2	5			2	
F110B20090520C	05/20/2009 Spring 2009 Fawn Branch	FAW	Test	1	4	5	3	2					8	8	1		5				2	53	1	6 1		1 6		3	4							1	
F110B20090514B	05/14/2009 Spring 2009 Fryingpan Creek 05/14/2000 Spring 2000 Fryingpan Creek Pight Fork	FRY	Test	3	1	9	1					10	7	7			4		8		1	19	2	5		9				3	-	3				2	
F110B20090520B	05/20/2009 Spring 2009 Gin Creek	GIN	Test	1	1	4	1	5				4	1	6			3		11		1	27	2	2 11		2 8	1		1	4		3				20	
F110B20090512B	05/12/2009 Spring 2009 Grape Branch	GRA	Test		7	7	1	1	1				9	9		1	7		23			38	8	3 3	1	3 1	2	1	2		1	3	1		-	2	
F110B20090513A F110B20090513D	05/13/2009 Spring 2009 Hurricane Fork 05/13/2009 Spring 2009 Jess Fork	JES	Test	1	2	5 10	9	0	1			1	2 9	9		1	2		8			25 61	2	8 61	1	5		1	4			1				i i	
F110B20090610B	06/10/2009 Spring 2009 Laurel Branch	LAB	Test		1	3	8					2	2			1			9			52	-		-	10		1				1					
F110B20090602A	06/02/2009 Spring 2009 Laurel Fork	LAU	Test		8	8	29	9				1	2	2 1		1	3		9		3 6	14	1	1 4	1	4	11		1		1	5	9		1	5	
F110B20090521B	05/21/2009 Spring 2009 Milli Branch Left Fork 05/21/2009 Spring 2009 Powell River	POW	Test		1	, 7	1					19	2			1	1		7 11			38 24	2	1 4 5				1		1	1	3	1				
F110B20090513B	05/13/2009 Spring 2009 Race Fork UT	RAC	Test	_	2	1	-		1		1		2	2			3		3		1	42	2	5 1	1							3			2	1	
F110B20090520A F110B20090513C	05/20/2009 Spring 2009 Roll Pone Branch 05/13/2009 Spring 2009 Spring Branch	ROL	Test	5	1	0 8	3	8					3 5	5			1		3		1 4	47	3	1 3 1	3	6 5						1		1		1	
F110B20090512A	05/12/2009 Spring 2009 Spruce Pine Creek	SPC	Test		1	0	14	4				5	4 8	8		2	•		4			48	7	, ,	5	1			3								
F110B20091030C	10/30/2009 Fall 2009 Birchfield Creek	BIR	Test			67	1					1	-	-		2	2 1		19			1	5	5		0	5	1	1		-	2	2				
F110B20091009E	11/06/2009 Fall 2009 Callahan Creek West Fork	CAW	Test	3	1	1 8	10	0 1		1		2	2	5		1	16		20			2			1	9 10	1	1	1		1	9			1		
F110B20091106E	11/06/2009 Fall 2009 Cane Branch	CAN	Test			67	8		1				1						26					1									2		-	2	
F110B20091009C F110B20091009D	10/09/2009 Fall 2009 Clear Creek 10/09/2009 Fall 2009 Fastland Creek	CLE EAS	Ref Ref		1	1 2	11	8 2	1			10					14 8		26 54		21	2	1 1			2 2 2 4	3	1 3	2	1 2	1	2			-		
F110B20091106D	11/06/2009 Fall 2009 Fawn Branch	FAW	Test	10		49	1 7	6				1	2	2		1	10		2		9	5				2	2	1		-		3			1		
F110B20091031D	10/31/2009 Fall 2009 Fryingpan Creek	FRY	Test			54	10	0 1				6					1		25					2		2 1	1	1	2	2	-	3				1	
F110B20091031C	10/51/2009 Fall 2009 Fryingpan Creek Right Fork 11/06/2009 Fall 2009 Gin Creek	GIN	Test	1	1	1 57	1 9	1				1							34					2		2	2			2		1	1				
F110B20091107E	11/07/2009 Fall 2009 Grape Branch	GRA	Test	1		30	1	5					1			1	1		40				2	2		4	4	1			1	2					
F110B20091107B F110B20091107A	11/07/2009 Fall 2009 Hurricane Fork 11/07/2009 Fall 2009 Jess Fork	HUR	Test	1		2 28 2 10	1 1	1 12 8					1 1	1		1	6		20 1 58			5	2 1	1 3	1	4 2	1	1			-	2			1		
F110B20091030A	10/30/2009 Fall 2009 Kelly Branch	KEL	Test	1	-	38	4	Ļ								3			30			10	2 2	2		1			2			7	2				
F110B20091030B	10/30/2009 Fall 2009 Kelly Branch UT	KUT	Test			5	1 1	5		1		1	1						64			2	3				2		1		1	8			1 1	2	
F110B20091031B F110B20091106B	10/31/2009 Fall 2009 Laurel Branch 11/06/2009 Fall 2009 Laurel Fork	LAB	Test	1	1 (5 40 37	9	0	2			1	1	1			11		26		7	2				1	5 5	2				1	1		6	•	
F110B20091009A	10/09/2009 Fall 2009 Mill Branch Left Fork	MIL	Test			22	12	2		1	1					2			55			2	1	1 3								1	2				
F110B20091009B F110B20091107C	10/09/2009 Fall 2009 Powell River 11/07/2009 Fall 2009 Race Fork UT	POW	Test			38 26	1 10	0 2 11		3		4							15			21	2	5			1	1	1		4	4	3		-		
F110B20091030D	10/30/2009 Fall 2009 Richey Branch	RIC	Test			51	3			5		2				2			44				2	5		1	2		•			1 1					
F110B20091030E	10/30/2009 Fall 2009 Richey Branch UT	RUT	Test	1		37	8			1	1	9				5		1	29		1	1	3			1	1	1			(6					1
F110B20091031A F110B20091107D	11/07/2009 Fall 2009 Spring Branch	SPR	Test	1	1	1 9	11	8 22		1	1		1				7		8		1			4	1	1	2	1		5	1	1					
F110B20091107F	11/07/2009 Fall 2009 Spruce Pine Creek	SPC	Test	1		. 19	1 5					5	1	1			9		61			1		1			2		3		-	3			3		
F110B20100520A F110B20100521C	05/20/2010 Spring 2010 Birchfield Creek 05/21/2010 Spring 2010 Burns Creek	BUR	Ref		2	2	20	0 4				1	1			1			2			32	1) ()	3		8 20				-	3	2				
F110B20100525C	05/25/2010 Spring 2010 Callahan Creek West Fork	CAW	Test	3	3	0	7	3					1 7	7			3		7			15	1	1		2 8			1							1	
F110B20100526A F110B20100521A	05/26/2010 Spring 2010 Cane Branch 05/21/2010 Spring 2010 Clear Creek	CAN	Test		2	0	12	2	1			2	3	1			17		6 1 5	2	1 1	71	-	, 1	2	2 3	6		1	3		5	4				
F110B20100521D	05/21/2010 Spring 2010 Copperhead Branch	COP	Ref		1	7	24	4 1				7	2 1	2	1	1	13		13	2		1	3	3	2	1 3	3		1	1		1				5	
F110B20100521E	05/21/2010 Spring 2010 Crooked Branch	CRO	Ref		4	4	2 2	1 2				15	1 3	3			2		4		6	22	2	2		2	16		1	1	,	- -			2	;	
F110B20100525B	05/25/2010 Spring 2010 Fawn Branch	FAW	Test		1	1	1 10	2 1				1	1	+ 1			13		1		1	51	3	3	1	1 1	0	1				2	1				
F110B20100520D	05/20/2010 Spring 2010 Fryingpan Creek	FRY	Test		1	1	9)				3	1 6	5			1					62	1 3	3 1		2	2		1			1					
F110B20100520E F110B20100525A	05/20/2010 Spring 2010 Fryingpan Creek Right Fork 05/25/2010 Spring 2010 Gin Creek	RFF GIN	Test Test		2	4	1	1	1			2	4 4	4 8			1 7		3 6 1			50 38	9	2		3 2	2		1	1	-	5				1	
F110B20100524B	05/24/2010 Spring 2010 Grape Branch	GRA	Test		2	5	5		1			2	4 4	4		1	,		15			57	2	2 1		2	9	2	3				1				
F110B20100524C	05/24/2010 Spring 2010 Hurricane Fork	HUR	Test		1	1	1						2 2	2		1			7 1			65	8	8 1 6 2	2	5	1				,	2			-		
F110B20100521G	05/19/2010 Spring 2010 Jess Fork 05/19/2010 Spring 2010 Kelly Branch	KEL	Test		1	ź	2						2			5			8			12 74	5	0 2 5							-	1			-		
F110B20100519C	05/19/2010 Spring 2010 Kelly Branch UT	KUT	Test		3	0	10	6					1			1			28			26	4	4 1							-	2					
F110B20100520F F110B20100519D	05/20/2010 Spring 2010 Laurel Branch 05/19/2010 Spring 2010 Laurel Fork	LAB	Test Test		3	9 2	3	5 2 7 1	1			1	1 4	5 1			4		14 8		6	33 7	5	5 1		2 2	4	1	1	1	-	2		1		i	
F110B20100521F	05/21/2010 Spring 2010 Hadde Camp Branch	MCB	Ref		1	3	2	6 1				14	2 2	2	2		6		1		1 1	37	4			2 2	2	1	3	1						1	
F110B20100519A	05/19/2010 Spring 2010 Mill Branch Left Fork	MIL	Test		1	0	14	4				12	5			1			4			64	1	3 1		-											
F110B20100519E F110B20100524D	05/19/2010 Spring 2010 Powell River 05/24/2010 Spring 2010 Race Fork UT	RAC	Test Test		2	а 1	2	4			1	13	7			1	1		8 19			26 61	1	/ 2 1 1	1	3			1	1		1 1					
F110B20100520B	05/20/2010 Spring 2010 Richey Branch	RIC	Test		4	4	20	D .				1	3						22 1			42	4			6	5				-	3	3		2	2	
F110B20100520C	05/20/2010 Spring 2010 Richey Branch UT 05/26/2010 Spring 2010 Poll Pope Branch	RUT	Test	1	1	7	1 7		1			7	1		2	2			5		1 1	40 ⊿8	1	34 1		4	2	1				1	2		-	1	
F110B20100526B	05/24/2010 Spring 2010 Spring Branch	SPR	Test	3	3	3	4	3	1	1		1	11		2		5		12 1		. 1	40 33	1	3		4 2						2	4			1	
F110B20100524A	05/24/2010 Spring 2010 Spruce Pine Creek	SPC	Test		1	5	1 12	2				3	4 6	5	1	1			6			41	1			1	1		2		ł	5					

APPENDIX D – GENUS-LEVEL BENTHIC MACROINVERTEBRATE DATA

						Individuals	lla uria	57	nia	ts ts	влика	7	snyd	uogod	a	e			ogonidae	syche	ra atopsyche	ra	omidae (A) oerlidae	ula	ra	egaster	onidae us	ata	r	rona erla		podidae	ilodes la	a
	Date	Sample			Site	otal #	entre	tapeti	locap	neleti	nphin	utochu	igom	richo	tenel	ietida	letis	yeric	eratop	ratol	ielife ieum	imar	liron Ioroi	mgm	inoce	ordula	irculi irrell	cram	pheto	iplect iplope	ixa	olicho	hqolo	topri
Sample ID G200B20081116A	Collected 11/16/2008	Season Fall 2008	Stream Name Birchfield Creek	Site ID BIR	Type	192	Ac Ac	A_8	158	<u>7 7</u>	Ψ	Ψ	A .	ξ Ψ	Αt	Ba	Ba	BC	ర	ů	<u>5</u> 7	0	<u>5 5</u> 6	Ci	CI	ŭ	<u>ರ ೧</u>	Di	Di	<u>2</u>	Di	ğ	ăã	Ec
G200B20081121C	11/21/2008	Fall 2008	Burns Creek	BUR	Ref	244	4		8	1			1		15					3	,		19							5			7	1
G200B20081128A	11/28/2008	Fall 2008	Clear Creek	CLE	Ref	185	8		5	1			1		1		1			3	1		41							5				
G200B20081128B G200B20081126BD	11/28/2008	Fall 2008 Fall 2008	Grape Branch	GRA	Test	189	2		8 63	2		1	1	1		1	1				3		25 7					1		44			2	1
G200B20081121A	11/21/2008	Fall 2008	Mill Branch Left Fork	MIL	Test	185			144	3			1	1							15		5							4	1			
G200B20081121B G200B20081126D	11/21/2008	Fall 2008 Fall 2008	Powell River Spruce Pine Creek	POW	Test	166	1		100	1					2					3	4	6	6 16							36 52			3	
G200B20090522A	05/22/2009	Spring 2009	Birchfield Creek	BIR	Test	197			00		8		1		-					5	2	11	32							52			9	
G200B20090522D	05/22/2009	Spring 2009	Burns Creek	BUR	Ref	185	2				35		1				2						49		2			1		6			1	
G200B20090521A G200B20090522B	05/22/2009	Spring 2009 Spring 2009	Clear Creek	CAW	Ref	192	4	1		1	8	1	2				22						8 4	1						3			6 4	3
G200B20090522C	05/22/2009	Spring 2009	Eastland Creek	EAS	Ref	211	1			4	16					2							8							15			6	2
G200B20090520C	05/20/2009	Spring 2009 Spring 2000	Fawn Branch	FAW	Test	199	17 2	1		1	26						11						7	3						12			14	1
G200B20090514B G200B20090514A	05/14/2009	Spring 2009 Spring 2009	Fryingpan Creek Right Fork	RFF	Test	195	28			2	31						5						3	1	1					12			14	
G200B20090520B	05/20/2009	Spring 2009	Gin Creek	GIN	Test	180	8			1	9						12			1	1 2		24							14			4	
G200B20090512B G200B20090513A	05/12/2009	Spring 2009 Spring 2009	Grape Branch Hurricane Fork	GRA	Test	178	9 6 8 10	1		1	32		2				5				3		2							36 14			2 17	3
G200B20090513D	05/13/2009	Spring 2009	Jess Fork	JES	Test	218	0 10				42		1				31				1		4			1				17				5
G200B20090610B	06/10/2009	Spring 2009	Laurel Branch	LAB	Test	179	1				2		1		1		20			2	3 2		8				1	3		12			10	1
G200B20090602A G200B20090521B	05/21/2009	Spring 2009 Spring 2009	Mill Branch Left Fork	MIL	Test	181	1				51	1	1		1		10		1		2		50 16	1						9 7			18	1
G200B20090521C	05/21/2009	Spring 2009	Powell River	POW	Test	199	4				54		3				34				3		2							16				2
G200B20090513B	05/13/2009	Spring 2009 Spring 2009	Race Fork UT Roll Rone Branch	RAC	Test	192		5		1	38						33						2			1				5	1	1		
G200B20090513C	05/13/2009	Spring 2009 Spring 2009	Spring Branch	SPR	Test	191		5		4	48						37				3		2							5				
G200B20090512A	05/12/2009	Spring 2009	Spruce Pine Creek	SPC	Test	173	10				11		2				4				9 1		23							7			11	1
G200B20091030C G200B20091009E	10/30/2009	Fall 2009 Fall 2009	Birchfield Creek Burns Creek	BUR	Ref	195 207	12		128				3		5					2 40	15	16	5 31							11 37			5	2
G200B20091106A	11/06/2009	Fall 2009	Callahan Creek West Fork	CAW	Test	183	2		5	8			-				5			23			14					2		17	1		-	-
G200B20091106E	11/06/2009	Fall 2009	Cane Branch	CAN	Test	186			109								2			4	13		20							27				
G200B20091009C G200B20091009D	10/09/2009	Fall 2009 Fall 2009	Eastland Creek	EAS	Ref	199	1 2						1				1			12			20 6				2			43 79			5	0
G200B20091106D	11/06/2009	Fall 2009	Fawn Branch	FAW	Test	181			80	11			1										11							12	1			2
G200B20091031D G200B20091031C	10/31/2009	Fall 2009 Fall 2009	Fryingpan Creek Right Fork	FRY	Test	190	2		95 144											4	3		12 1				1			34			1	1
G200B20091106C	11/06/2009	Fall 2009	Gin Creek	GIN	Test	186			101	1					1		1			7	16	1	15							30			2	
G200B20091107E	11/07/2009	Fall 2009	Grape Branch	GRA	Test	189	2		38	2							1	l		10	3		23							52			4	1
G200B20091107B G200B20091107A	11/07/2009	Fall 2009 Fall 2009	Hurricane Fork Jess Fork	JES	Test	187	0		46 17	3			2			2	2			2			25 I 48					9		25 89			1	
G200B20091030A	10/30/2009	Fall 2009	Kelly Branch	KEL	Test	177	1		80	-	2		5				~			•	1		13							42	1			2
G200B20091030B	10/30/2009	Fall 2009	Kelly Branch UT	KUT	Test	182			10								1		1	-	1		28						1	109	1			3
G200B20091031B G200B20091106B	11/06/2009	Fall 2009	Laurel Fork	LAU	Test	245 190	1		28	1			1	1			10			4	1		18				1			35 2	1		4	
G200B20091009A	10/09/2009	Fall 2009	Mill Branch Left Fork	MIL	Test	187			51				2							13	51		17							34	1	1		
G200B20091009B G200B20091107C	10/09/2009 11/07/2009	Fall 2009 Fall 2009	Powell River Race Fork UT	POW	Test	189 181			76 27	1				2			2				1		14 39					1		28	7			2
G200B20091030D	10/30/2009	Fall 2009	Richey Branch	RIC	Test	182	3		90				2							6	37		5							24	,		4	1
G200B20091030E	10/30/2009	Fall 2009	Richey Branch UT	RUT	Test	214	2		54	1			12							1	2		19							68	2			
G200B20091031A G200B20091107D	11/07/2009	Fall 2009	Spring Branch	SPR	Test	173			128	1				1			1			1			27		1			6	25	10	2			
G200B20091107F	11/07/2009	Fall 2009	Spruce Pine Creek	SPC	Test	167			13						1		3	1		2	15	4	8							68				2
G200B20100520A G200B20100521C	05/20/2010	Spring 2010 Spring 2010	Birchfield Creek Burns Creek	BIR	Test	194 164	1				10		1		1		3			2	2	13	14					1		6			35	1
G200B20100525C	05/25/2010	Spring 2010 Spring 2010	Callahan Creek West Fork	CAW	Test	177	5 3			5	17						49			3	3 1		12							9				1
G200B20100526A	05/26/2010	Spring 2010	Cane Branch	CAN	Test	180					1						22				2 4		30							3			0	2
G200B20100521A G200B20100521D	05/21/2010	Spring 2010 Spring 2010	Copperhead Branch	COP	Ref	192	5 2	3			3		1				23 28			3	2		17 37					1		12			8 8 1	2
G200B20100521E	05/21/2010	Spring 2010	Crooked Branch	CRO	Ref	187	2				3		1				8		2		1		34					3		7		1	32 3	
G200B20100521B G200B20100525B	05/21/2010	Spring 2010 Spring 2010	Eastland Creek	EAS	Ref	182	2 1				8						3						22							20			14	1
G200B20100520D	05/20/2010	Spring 2010 Spring 2010	Fryingpan Creek	FRY	Test	170	12 1				5						5				2		14							1			2 6	
G200B20100520E	05/20/2010	Spring 2010	Fryingpan Creek Right Fork	RFF	Test	180	8				15						3				7		17							4			3 11	1
G200B20100525A G200B20100524B	05/25/2010 05/24/2010	Spring 2010 Spring 2010	Gin Creek Grane Branch	GIN GRA	Test	186	3 3				2		1				41 2				1 3		6				1			27			16 4	4
G200B20100524C	05/24/2010	Spring 2010	Hurricane Fork	HUR	Test	189	1 7				11						2				2		5		1			2		15			2 1	
G200B20100521G	05/21/2010	Spring 2010 Spring 2010	Jess Fork Kelly Branch	JES	Test	202					55		2				30 12				5		7							61 23				2
G200B20100519B	05/19/2010	Spring 2010 Spring 2010	Kelly Branch UT	KUT	Test	186	1				4		2				54				2		19							53				2
G200B20100520F	05/20/2010	Spring 2010	Laurel Branch	LAB	Test	188	2 1			1	7						65			10	1 3		8							20			1	1
G200B20100519D G200B20100521F	05/19/2010 05/21/2010	Spring 2010 Spring 2010	Laurel Fork Middle Camp Branch	LAU MCB	Test Ref	190 168	4	2		2	8	1	1				20 4				1		52 40			1		1		2			8 2	4
G200B20100519A	05/19/2010	Spring 2010	Mill Branch Left Fork	MIL	Test	191	2	-		1	26		1				19				8 2		20							5			1	ĺ.
G200B20100519E	05/19/2010	Spring 2010	Powell River	POW	Test	193					29		2				48				13		6							13		1		
G200B20100524D G200B20100520B	05/20/2010	Spring 2010 Spring 2010	Richey Branch	RIC	Test	187	1				5						2 6	1			5 10		33							24			8	1
G200B20100520C	05/20/2010	Spring 2010	Richey Branch UT	RUT	Test	166	3				22		4				6				2		16							11			6	
G200B20100526B G200B20100524E	05/26/2010	Spring 2010 Spring 2010	Roll Pone Branch Spring Branch	ROL	Test	181 178	1	2		1	11 24						11 4				2 17		23 7 1					1		6 17	1	1		1
G200B20100524A	05/24/2010	Spring 2010 Spring 2010	Spruce Pine Creek	SPC	Test	186				4	3		2				28		1		14 2		. 1 25							12	1		1 7	

Sample		nidae	ipididae eorus	hemera	hemerella	hemerellidae	hydridae	rylophella ossosoma	mphidae	ploperla	lichus	meroaromia ntagenia	ptageniidae	xatoma	moplectra	datophylax	aracarna drochus	drophilidae	dropsyche	dropsychidae	<i>droptila</i> droptilidae	nychia	perla	pidoptera vidostoma	ptophlebiidae	uctra	nnephilidae	nnophila nonia	oe diversa	ıccaffertium	icronychus	iyatrichia	nopnuus mouridae	ophylax	otrichia	gronia	mopteryx izochaeta	tioservus	mosia
Season Eall 2008	Stream Name Birabfield Crook	Ē	Er Er	E_{P}	Ep	Вр	Ц	1 <u></u> 1 <u></u> 1 <u></u> 1 <u></u> 1 <u></u>	ŏ	H_{c}	He	μ.	H^{ϵ}	H_{ϵ}	Ηc	E H	E E	Ĥ	ςH ς	Ĥ	Я Н	Isc	Ise	Le	Le	Le	Li	Lù Lù	$L_{\mathcal{H}}$	W	W	W	žž	Né	Ne	2 Ni	õ õ	o_l	0
Fall 2008	Burns Creek							6				1	5	3					1				7							1						2	1		
Fall 2008	Clear Creek		7																2					1		5	2			3				1			3		
Fall 2008	Grape Branch		3							2			1	1					3				1			1	2			2			1	3			3	1	
Fall 2008	Mill Branch Left Fork													_					1							1		2					2				2		
Fall 2008 Fall 2008	Powell River Spruce Pine Creek											1		2												11							9			1		8	
Spring 2009	Birchfield Creek																			3						85					1					2			
Spring 2009 Spring 2009	Burns Creek		8		10					1			1	7												42		1 1		1							1		
Spring 2009 Spring 2009	Clear Creek		36		14					1	1			4									1	3		45		3				:	2	1					
Spring 2009	Eastland Creek		36		9					2				3										1		61								3			1		
Spring 2009 Spring 2009	Fryingpan Creek		15		2					2																39								2		1	1		
Spring 2009	Fryingpan Creek Right Fork		1		6						1			1											1	47								30	1		20)	
Spring 2009 Spring 2009	Gin Creek Grape Branch		9		32 4					1									2				6			52 61		2								2	7		
Spring 2009	Hurricane Fork		2		11					10																58		2					1			1			
Spring 2009 Spring 2009	Jess Fork											1					1						1			109											1	6	1
Spring 2009 Spring 2009	Laurel Fork			1	2									6								1	4	5		20				1				1				0	
Spring 2009	Mill Branch Left Fork		2											1					3							91							1				5		
Spring 2009 Spring 2009	Race Fork UT		6		2									1							1					42 89		1					1	2			1		
Spring 2009	Roll Pone Branch				_																			1		84		2											
Spring 2009 Spring 2009	Spring Branch Spruce Pine Creek	3	4		4					15		1		2												42 80					1			1			2		
Fall 2009	Birchfield Creek													_																_			5						
Fall 2009 Fall 2009	Burns Creek Callahan Creek West Fork		24			1		1						3		1	1						1		1	1		1		5									
Fall 2009	Cane Branch											1																								1	1		
Fall 2009 Fall 2009	Clear Creek Eastland Creek		3	1										1									3			3	1	2	1	3						1			
Fall 2009	Fawn Branch		8			2								3									4			0				2						•	1		
Fall 2009 Fall 2009	Fryingpan Creek Right Fork										1		1			2			1				1											1		1	2	2	
Fall 2009	Gin Creek																						2													1	2	2	
Fall 2009	Grape Branch		1			2			1			1		1		2					1		7		2	2	1							2			2		
Fall 2009 Fall 2009	Jess Fork		0			4						1		1		2					1		/		2	7	1										8		
Fall 2009	Kelly Branch																	1								13													
Fall 2009 Fall 2009	Laurel Branch												1													2	3			2					1	2		3	
Fall 2009	Laurel Fork		20		2								1	1																							_		
Fall 2009 Fall 2009	Mill Branch Lett Fork Powell River	2																								2 31											3		
Fall 2009	Race Fork UT											2		2				1								2	7						1		1		13	;	
Fall 2009 Fall 2009	Richey Branch Richey Branch UT															4		1								1	1	5									1	2	
Fall 2009	Roll Pone Branch										1							-								-		1									-		
Fall 2009 Fall 2009	Spring Branch Spruce Pine Creek		18			3								1									5	2		2				0				4			7	2	
Spring 2010	Birchfield Creek					5													1							124												-	
Spring 2010 Spring 2010	Burns Creek		15		14					3				3												65		1						1			1		
Spring 2010 Spring 2010	Cane Branch		1 15		14					5									1							124		1					1		1	1	2		
Spring 2010 Spring 2010	Clear Creek		19		8					3		1	3	2								3	1	3		25		1		3			1	•					
Spring 2010 Spring 2010	Crooked Branch		3		1					2		1	1	2								2	2			42		5		1			1	0					
Spring 2010	Eastland Creek		35		8					2			3										1	1	2	42				2									
Spring 2010 Spring 2010	Fryingpan Creek		1	1	1		1																1		2	95 114							1				1		
Spring 2010	Fryingpan Creek Right Fork							2					2													87				1				4			3		
Spring 2010 Spring 2010	Gin Creek Grape Branch		1 10 2		18			1											1				1			58 109							1		1	2	1	1	
Spring 2010	Hurricane Fork				2									1												124		1							1		1		
Spring 2010 Spring 2010	Jess Fork Kelly Branch																									24 121		2								1	5		
Spring 2010	Kelly Branch UT																									43							1				1		
Spring 2010 Spring 2010	Laurel Branch		1	1	10					4			5	5									3			48 16		2		2						1	1	2	
Spring 2010	Middle Camp Branch		1 3	•	4								3	6									1	2		47		3		2				3					
Spring 2010	Mill Branch Left Fork		1									1							1				2			101		1									1		
Spring 2010 Spring 2010	Race Fork UT		1							2									1				4			108		1					4				2		
Spring 2010	Richey Branch											1		1							1		1			73		2								1			
Spring 2010 Spring 2010	Roll Pone Branch											1											1	1		77						1		2		1			1
Spring 2010 Spring 2010	Spring Branch Spruce Pine Creek		13		1			2		3				2	1											57 68								1		1	1		

Sample		dimnius	lpomyia	racapnia	raleptophlebia	ltoperla	ltoperlidae	rlesta	rlidae	rlodidae	ryganeidae	lycentropodidae	lycentropus	osimulium	ephenus eudolimnophila	eronarcys	cnopsyche	ralidae	menus	yacophila	irtidae	dis	nuliidae	nulium	yedina	macron	melmis	nonema	lobezzia	suldmobile	eusa	banus	eniopteryx	llaperla npanoga	phi	pulidae	shoperla	ormaldia	sns
Season Eall 2008	Stream Name Birabfield Creek	õ	P_{ℓ}	P_{ℓ}	P_{c}	P_{e}	Pe	P_{e}	Pe	Pe	P	Ă	P_{c}	'd	a a	P_t	P.	£.	Ré	- RI	š	Si	Si	Si	So	St	S_{t}	St	10	St.	ò	T_{ℓ}	T_{ℓ}	T_{ℓ} T_{II}	- Ti	F	Vi	M	Y_{l}
Fall 2008 Fall 2008	Burns Creek	6	3	28	3	1							2							8						1			4						1				
Fall 2008	Clear Creek	13	1	6	41								3			1	1			5				4					6				14					1	
Fall 2008	Eastland Creek	9	3	3	3	1										4				1				30					6		3		2						
Fall 2008 Fall 2008	Grape Branch Mill Branch Left Fork			32									2							4											4		1					1	
Fall 2008	Powell River	2																		2														2				1	
Fall 2008	Spruce Pine Creek	2	2	2											2					3													8		1				
Spring 2009	Birchfield Creek		2			2		5												1				37															
Spring 2009 Spring 2009	Callahan Creek West Fork	4	3			2			1			1	1	4						12			1																13
Spring 2009	Clear Creek	9			5	2							1						1	3				2		1										2			1
Spring 2009	Eastland Creek	2			11	3							_			5				3				13															5
Spring 2009 Spring 2009	Fawn Branch Fryingpan Creek	15			4				8				5		4	3				3						3									1				9
Spring 2009	Fryingpan Creek Right Fork	3						24	0							7	1			6						5									1				3
Spring 2009	Gin Creek							2							4					3																			6
Spring 2009	Grape Branch					1							1		1					4				1											2				1
Spring 2009	Humicane Fork Jess Fork					1			1				2		1					2							1								5				
Spring 2009	Laurel Branch							14					1							2															5				
Spring 2009	Laurel Fork	4			9		1			3						1				8				15		1								2					
Spring 2009	Mill Branch Left Fork																																						
Spring 2009 Spring 2009	Powell River Race Fork UT	27			1	1							1			2				4				1											1				1
Spring 2009	Roll Pone Branch				9	•			12											1															•				4
Spring 2009	Spring Branch				2	6														2												1			1				10
Spring 2009	Spruce Pine Creek	3								3		1			3					1				7															
Fall 2009 Fall 2009	Birchneid Creek Burns Creek	2		43									1							10				1											1			3	
Fall 2009	Callahan Creek West Fork	2		10		1														33				•						;	8		1		2			1	
Fall 2009	Cane Branch									1					1									4											4				
Fall 2009	Clear Creek	21		6	33						1		1			2				2					1	2		8		-	2							1	
Fall 2009 Fall 2009	Eastiand Creek	2	1	2	20							1				3				14								3		1	5 6		2					3	
Fall 2009	Fryingpan Creek	11		6								•	2		3	3				5								5			0		-		1			5	
Fall 2009	Fryingpan Creek Right Fork	3														3																			2			1	
Fall 2009	Gin Creek	2	1	20					2				1							3				3							1				2			2	
Fall 2009 Fall 2009	Hurricane Fork		2	50					2				1							2					1						5 5		1		2			1	
Fall 2009	Jess Fork			3		1														4															3				
Fall 2009	Kelly Branch																1			9				4									1		1				
Fall 2009 Fall 2009	Kelly Branch UT	5																		12				1	2					1	1		1		0			1	1
Fall 2009	Laurel Fork	1		27	14								1							4				2									11		0			1	
Fall 2009	Mill Branch Left Fork																2			4		1		4	1														
Fall 2009	Powell River	11		10		1														6				6							,			1	6			1	
Fall 2009 Fall 2009	Richev Branch			19		1							3			1	1			2		1								1	0				2			1	
Fall 2009	Richey Branch UT												2				•			12				3											-			3	
Fall 2009	Roll Pone Branch				1				3				1							3															1			6	
Fall 2009	Spring Branch	4	1	10		1									2					7								1		4	0		7		1			3	
Spring 2010	Birchfield Creek	4	1	10											2					3				23				1					'					1	
Spring 2010	Burns Creek	1				3							1							5				6						1	2								
Spring 2010	Callahan Creek West Fork	2																																	1				12
Spring 2010	Cane Branch	4			1	1		1					1			5				7				6											1		1		5
Spring 2010 Spring 2010	Copperhead Branch	16			1	1							1			1				1				1											1		1		2
Spring 2010	Crooked Branch	17			9			1					1		3	1											1												
Spring 2010	Eastland Creek	4			9	1		1								1				2																			2
Spring 2010 Spring 2010	Fawn Branch	1	1			1		2					1		1	1	1			2				1															2
Spring 2010	Fryingpan Creek Right Fork	3			1			5					1		1	2	1			5															1				3
Spring 2010	Gin Creek	2						3							5					1															2				4
Spring 2010	Grape Branch												2		1									2															
Spring 2010 Spring 2010	Hurricane Fork							4					1							2														4	2				
Spring 2010 Spring 2010	Kelly Branch												2							1														1	1				
Spring 2010	Kelly Branch UT	1																		5	1																		
Spring 2010	Laurel Branch	0			10			6					1							3				2											1				
Spring 2010 Spring 2010	Laurel FORK Middle Camp Branch	9			2			1					1			1			2	5				2			4				1				1				3
Spring 2010	Mill Branch Left Fork				4			2											4					1			-				•				1				5
Spring 2010	Powell River	17				1		1								1				3															1				1
Spring 2010	Race Fork UT	~																		1				2							4				1				
Spring 2010 Spring 2010	Richey Branch	2	1					6 6					3							5				3											1				1
Spring 2010	Roll Pone Branch	10			1			12					-					1		3				4											1				1
Spring 2010	Spring Branch	1						9												3															1				4
Spring 2010	Spruce Pine Creek	- 4						3							4					6																			

APPENDIX E – VASCI METRICS AND SCORES

														Tot		%	%	%	%	%		
	Date	Sample			Site	Tot	EPT	%	%	%	%	%		Taxa	EPT	Ephem	PT-H	Scrapers	Chiron	2 Dom	HBI	VASCI
Sample ID	Collected	Season	Stream Name	Site ID	Type	Taxa	Taxa	Ephem	РТ-Н	Scrapers	Chiron	2 Dom	HBI	Score	Score	Score	Score	Score	Score	Score	Score	Score
F110B20081116A	11/16/2008	Fall 2008	Birchfield Creek	BIR	Test	5	3	0.00	88.24	0.00	1.96	96.08	1.55	22.73	27.27	0.00	100.00	0.00	98.04	5.67	100.00	44.21
F110B20081121C	11/21/2008	Fall 2008	Burns Creek	BUR	Ref	16	10	13.89	31.48	7.41	40.74	58.33	3.97	72.73	90.91	22.66	88.43	14.36	59.26	60.21	88.64	62.15
F110B20081128A	11/28/2008	Fall 2008	Clear Creek	CLE	Ref	18	12	24.79	21.37	13.68	35.04	52.99	3.97	81.82	100.00	40.43	60.02	26.50	64.96	67.93	88.61	66.28
F110B20081128B	11/28/2008	Fall 2008	Eastland Creek	EAS	Ref	20	13	5.32	39.36	13.83	11.70	39.36	3.48	90.91	100.00	8.68	100.00	26.80	88.30	87.63	95.83	74.77
F110B20081126B	11/26/2008	Fall 2008	Grape Branch	GRA	Test	13	8	4.00	54.40	2.40	2.40	82.40	3.09	59.09	72.73	6.53	100.00	4.65	97.60	25.43	100.00	58.25
F110B20081121A	11/21/2008	Fall 2008	Mill Branch Left Fork	MIL	Test	11	7	1.85	79.63	0.00	3.70	86.11	1.86	50.00	63.64	3.02	100.00	0.00	96.30	20.07	100.00	54.13
F110B20081121B	11/21/2008	Fall 2008	Powell River	POW	Test	8	5	0.00	68.75	2.08	3.13	82.29	2.51	36.36	45.45	0.00	100.00	4.04	96.88	25.59	100.00	51.04
F110B20081126D	11/26/2008	Fall 2008	Spruce Pine Creek	SPC	Test	14	8	0.00	53.85	5.98	8.55	64.10	3.34	63.64	72.73	0.00	100.00	11.59	91.45	51.87	97.91	61.15
F110B20090522A	05/22/2009	Spring 2009	Birchfield Creek	BIR	Test	10	6	0.00	58.04	0.00	18.75	61.61	2.88	45.45	54.55	0.00	100.00	0.00	81.25	55.48	100.00	54.59
F110B20090522D	05/22/2009	Spring 2009	Burns Creek	BUR	Ref	15	9	6.54	53.27	6.54	26.17	46.73	3.13	68.18	81.82	10.67	100.00	12.68	73.83	76.98	100.00	65.52
F110B20090521A	05/21/2009	Spring 2009	Callahan Creek West Fork	CAW	Test	14	11	15.74	78.70	6.48	3.70	63.89	1.70	63.64	100.00	25.68	100.00	12.56	96.30	52.18	100.00	68.79
F110B20090522B	05/22/2009	Spring 2009	Clear Creek	CLE	Ref	18	13	41.28	40.37	25.69	0.00	44.04	2.60	81.82	100.00	67.35	100.00	49.78	100.00	80.87	100.00	84.98
F110B20090522C	05/22/2009	Spring 2009	Eastland Creek	EAS	Ref	19	14	27.73	53.78	15.97	3.36	46.22	2.25	86.36	100.00	45.24	100.00	30.94	96.64	77.72	100.00	79.61
F110B20090520C	05/20/2009	Spring 2009	Fawn Branch	FAW	Test	16	13	18.75	74.11	9.82	2.68	61.61	1.61	72.73	100.00	30.59	100.00	19.03	97.32	55.48	100.00	71.89
F110B20090514B	05/14/2009	Spring 2009	Fryingpan Creek	FRY	Test	14	11	28.95	53.51	14.04	0.88	38.60	2.50	63.64	100.00	47.22	100.00	27.20	99.12	88.73	100.00	78.24
F110B20090514A	05/14/2009	Spring 2009	Fryingpan Creek Right Fork	RFF	Test	15	11	18.33	69.17	18.33	0.83	40.83	1.92	68.18	100.00	29.91	100.00	35.53	99.17	85.50	100.00	77.29
F110B20090520B	05/20/2009	Spring 2009	Gin Creek	GIN	Test	13	11	32.69	41.35	3.85	14.42	41.35	3.06	59.09	100.00	53.33	100.00	7.45	85.58	84.76	100.00	73.78
F110B20090512B	05/12/2009	Spring 2009	Grape Branch	GRA	Test	20	13	20.00	50.43	7.83	0.87	53.04	2.66	90.91	100.00	32.63	100.00	15.17	99.13	67.86	100.00	75.71
F110B20090513A	05/13/2009	Spring 2009	Hurricane Fork	HUR	Test	17	11	17.65	54.90	6.86	8.82	42.16	2.65	77.27	100.00	28.79	100.00	13.30	91.18	83.59	100.00	74.27
F110B20090513D	05/13/2009	Spring 2009	Jess Fork	JES	Test	9	5	15.87	69.84	0.00	0.79	69.05	1.73	40.91	45.45	25.89	100.00	0.00	99.21	44.73	100.00	57.02
F110B20090610B	06/10/2009	Spring 2009	Laurel Branch	LAB	Test	11	6	13.00	64.00	2.00	8.00	65.00	1.94	50.00	54.55	21.21	100.00	3.88	92.00	50.58	100.00	59.03
F110B20090602A	06/02/2009	Spring 2009	Laurel Fork	LAU	Test	19	13	17.54	34.21	4.39	25.44	37.72	3.70	86.36	100.00	28.62	96.10	8.50	74.56	90.00	92.62	72.10
F110B20090521B	05/21/2009	Spring 2009	Mill Branch Left Fork	MIL	Test	7	4	4.59	72.48	0.00	10.09	72.48	1.74	31.82	36.36	7.48	100.00	0.00	89.91	39.77	100.00	50.67
F110B20090521C	05/21/2009	Spring 2009	Powell River	POW	Test	13	8	16.82	50.47	18.69	0.93	45.79	2.76	59.09	72.73	27.44	100.00	36.22	99.07	78.33	100.00	71.61
F110B20090513B	05/13/2009	Spring 2009	Race Fork UT	RAC	Test	14	10	25.23	67.29	3.74	0.00	62.62	1.81	63.64	90.91	41.16	100.00	7.24	100.00	54.02	100.00	69.62
F110B20090520A	05/20/2009	Spring 2009	Roll Pone Branch	ROL	Test	10	8	17.43	78.90	0.00	2.75	71.56	1.31	45.45	72.73	28.44	100.00	0.00	97.25	41.10	100.00	60.62
F110B20090513C	05/13/2009	Spring 2009	Spring Branch	SPR	Test	18	13	26.00	62.00	2.00	1.00	44.00	2.31	81.82	100.00	42.41	100.00	3.88	99.00	80.92	100.00	76.00
F110B20090512A	05/12/2009	Spring 2009	Spruce Pine Creek	SPC	Test	11	6	16.98	52.83	7.55	13.21	58.49	2.40	50.00	54.55	27.70	100.00	14.63	86.79	59.98	100.00	61.71
F110B20091030C	10/30/2009	Fall 2009	Birchfield Creek	BIR	Test	9	5	0.00	75.96	0.00	0.96	82.69	2.20	40.91	45.45	0.00	100.00	0.00	99.04	25.01	100.00	51.30
F110B20091009E	10/09/2009	Fall 2009	Burns Creek	BUR	Ref	15	9	7.62	35.24	4.76	15.24	51.43	3.96	68.18	81.82	12.43	98.98	9.23	84.76	70.19	88.80	64.30
F110B20091106A	11/06/2009	Fall 2009	Callahan Creek West Fork	CAW	Test	16	12	20.20	43.43	18.18	10.10	39.39	3.08	72.73	100.00	32.96	100.00	35.24	89.90	87.58	100.00	77.30
F110B20091106E	11/06/2009	Fall 2009	Cane Branch	CAN	Test	8	2	0.00	62.04	0.00	7.41	86.11	2.80	36.36	18.18	0.00	100.00	0.00	92.59	20.07	100.00	45.90
F110B20091009C	10/09/2009	Fall 2009	Clear Creek	CLE	Ref	20	16	31.03	18.97	22.41	15.52	40.52	4.04	90.91	100.00	50.63	53.27	43.44	84.48	85.96	87.60	74.54
F110B20091009D	10/09/2009	Fall 2009	Eastland Creek	EAS	Ref	16	12	17.50	26.67	10.83	4.17	55.00	3.95	72.73	100.00	28.55	74.91	20.99	95.83	65.03	88.97	68.38
F110B20091106D	11/06/2009	Fall 2009	Fawn Branch	FAW	Test	17	12	28.18	58.18	10.00	6.36	53.64	2.03	77.27	100.00	45.97	100.00	19.38	93.64	67.00	100.00	75.41
F110B20091031D	10/31/2009	Fall 2009	Fryingpan Creek	FRY	Test	14	11	0.91	60.00	9.09	9.09	71.82	2.88	63.64	100.00	1.48	100.00	17.62	90.91	40.73	100.00	64.30
F110B20091031C	10/31/2009	Fall 2009	Fryingpan Creek Right Fork	RFF	Test	9	5	0.00	83.33	1.85	7.41	86.11	1.71	40.91	45.45	0.00	100.00	3.59	92.59	20.07	100.00	50.33
F110B20091106C	11/06/2009	Fall 2009	Gin Creek	GIN	Test	11	7	1.83	55.96	0.92	8.26	83.49	3.15	50.00	63.64	2.99	100.00	1.78	91.74	23.86	100.00	54.25
F110B20091107E	11/07/2009	Fall 2009	Grape Branch	GRA	Test	13	9	1.92	41.35	0.96	14.42	67.31	3.94	59.09	81.82	3.14	100.00	1.86	85.58	47.24	89.10	58.48
F110B20091107B	11/07/2009	Fall 2009	Hurricane Fork	HUR	Test	22	16	9.17	50.46	6.42	10.09	44.04	3.13	100.00	100.00	14.97	100.00	12.45	89.91	80.87	100.00	74.77
F110B20091107A	11/07/2009	Fall 2009	Jess Fork	JES	Test	11	8	2.56	17.95	0.00	23.93	73.50	4.90	50.00	72.73	4.18	50.42	0.00	76.07	38.29	74.96	45.83
F110B20091030A	10/30/2009	Fall 2009	Kelly Branch	KEL	Test	11	6	0.00	58.00	2.00	4.00	68.00	2.73	50.00	54.55	0.00	100.00	3.88	96.00	46.24	100.00	56.33
F110B20091030B	10/30/2009	Fall 2009	Kelly Branch UT	KUT	Test	12	5	0.00	16.50	1.94	14.56	76.70	5.05	54.55	45.45	0.00	46.36	3.76	85.44	33.67	72.82	42.76
F110B20091031B	10/31/2009	Fall 2009	Laurel Branch	LAB	Test	13	7	5.00	37.14	1.43	11.43	68.57	3.88	59.09	63.64	8.16	100.00	2.77	88.57	45.42	90.02	57.21
F110B20091106B	11/06/2009	Fall 2009	Laurel Fork	LAU	Test	13	11	18.52	48.15	11.11	8.33	58.33	3.28	59.09	100.00	30.21	100.00	21.53	91.67	60.21	98.86	70.20
F110B20091009A	10/09/2009	Fall 2009	Mill Branch Left Fork	MIL	Test	11	5	0.00	25.49	0.00	11.76	75.49	4.49	50.00	45.45	0.00	71.60	0.00	88.24	35.42	80.96	46.46
F110B20091009B	10/09/2009	Fall 2009	Powell River	POW	Test	11	5	0.00	62.75	4.90	9.80	57.84	2.42	50.00	45.45	0.00	100.00	9.50	90.20	60.92	100.00	57.01
F110B20091107C	11/07/2009	Fall 2009	Race Fork UT	RAC	Test	15	9	0.00	48.94	2.13	23.40	51.06	3.18	68.18	81.82	0.00	100.00	4.12	76.60	70.72	100.00	62.68
F110B20091030D	10/30/2009	Fall 2009	Richey Branch	RIC	Test	11	6	0.00	51.82	1.82	2.73	86.36	3.32	50.00	54.55	0.00	100.00	3.52	97.27	19.71	98.26	52.91
F110B20091030E	10/30/2009	Fall 2009	Richey Branch UT	RUT	Test	15	8	0.95	46.67	8.57	7.62	62.86	3.16	68.18	72.73	1.55	100.00	16.61	92.38	53.67	100.00	63.14
F110B20091031A	10/31/2009	Fall 2009	Roll Pone Branch	ROL	Test	11	8	2.54	67.80	0.00	4.24	86.44	2.54	50.00	72.73	4.15	100.00	0.00	95.76	19.59	100.00	55.28
F110B20091107D	11/07/2009	Fall 2009	Spring Branch	SPR	Test	15	9	20.21	41.49	7.45	19.15	42.55	3.21	68.18	81.82	32.97	100.00	14.43	80.85	83.02	99.84	70.14
F110B20091107F	11/07/2009	Fall 2009	Spruce Pine Creek	SPC	Test	14	8	8.70	24.35	14.78	4.35	69.57	4.46	63.64	72.73	14.19	68.39	28.65	95.65	43.98	81.53	58.59
F110B20100520A	05/20/2010	Spring 2010	Birchfield Creek	BIR	Test	8	5	0.88	81.58	0.00	6.14	78.07	1.40	36.36	45.45	1.43	100.00	0.00	93.86	31.69	100.00	51.10
F110B20100521C	05/21/2010	Spring 2010	Burns Creek	BUR	Ref	13	8	1.98	71.29	0.99	19.80	51.49	2.48	59.09	72.73	3.23	100.00	1.92	80.20	70.11	100.00	60.91

														Tot		%	%	%	%	%		
	Date	Sample			Site	Tot	EPT	%	%	%	%	%		Taxa	EPT	Ephem	PT-H	Scrapers	Chiron	2 Dom	HBI	VASCI
Sample ID	Collected	Season	Stream Name	Site ID	Туре	Taxa	Taxa	Ephem	PT-H	Scrapers	Chiron	2 Dom	HBI	Score	Score	Score	Score	Score	Score	Score	Score	Score
F110B20100525C	05/25/2010	Spring 2010	Callahan Creek West Fork	CAW	Test	15	11	43.00	40.00	5.00	7.00	45.00	3.06	68.18	100.00	70.15	100.00	9.69	93.00	79.48	100.00	77.56
F110B20100526A	05/26/2010	Spring 2010	Cane Branch	CAN	Test	9	3	0.00	72.00	1.00	12.00	83.00	1.66	40.91	27.27	0.00	100.00	1.94	88.00	24.57	100.00	47.84
F110B20100521A	05/21/2010	Spring 2010	Clear Creek	CLE	Ref	20	16	38.94	41.59	17.70	11.50	32.74	3.04	90.91	100.00	63.52	100.00	34.30	88.50	97.19	100.00	84.30
F110B20100521D	05/21/2010	Spring 2010	Copperhead Branch	COP	Ref	20	14	37.84	18.02	24.32	21.62	36.94	4.29	90.91	100.00	61.73	50.61	47.14	78.38	91.13	84.00	75.49
F110B20100521E	05/21/2010	Spring 2010	Crooked Branch	CRO	Ref	17	11	14.02	42.06	16.82	19.63	40.19	3.22	77.27	100.00	22.87	100.00	32.60	80.37	86.44	99.64	74.90
F110B20100521B	05/21/2010	Spring 2010	Eastland Creek	EAS	Ref	14	12	33.33	42.42	24.24	12.12	44.44	3.04	63.64	100.00	54.38	100.00	46.98	87.88	80.28	100.00	79.14
F110B20100525B	05/25/2010	Spring 2010	Fawn Branch	FAW	Test	16	12	26.00	60.00	14.00	10.00	64.00	2.01	72.73	100.00	42.41	100.00	27.13	90.00	52.02	100.00	73.04
F110B20100520D	05/20/2010	Spring 2010	Fryingpan Creek	FRY	Test	14	9	17.31	68.27	4.81	8.65	70.19	1.61	63.64	81.82	28.23	100.00	9.32	91.35	43.07	100.00	64.68
F110B20100520E	05/20/2010	Spring 2010	Fryingpan Creek Right Fork	RFF	Test	18	12	8.65	68.27	4.81	10.58	58.65	1.89	81.82	100.00	14.12	100.00	9.32	89.42	59.75	100.00	69.30
F110B20100525A	05/25/2010	Spring 2010	Gin Creek	GIN	Test	14	9	36.79	41.51	12.26	9.43	58.49	2.79	63.64	81.82	60.02	100.00	23.77	90.57	59.98	100.00	72.47
F110B20100524B	05/24/2010	Spring 2010	Grape Branch	GRA	Test	14	8	8.11	64.86	2.70	4.50	64.86	2.22	63.64	72.73	13.23	100.00	5.24	95.50	50.77	100.00	62.64
F110B20100524C	05/24/2010	Spring 2010	Hurricane Fork	HUR	Test	13	9	3.03	82.83	1.01	1.01	73.74	1.17	59.09	81.82	4.94	100.00	1.96	98.99	37.95	100.00	60.59
F110B20100521G	05/21/2010	Spring 2010	Jess Fork	JES	Test	10	5	11.01	45.87	0.00	1.83	66.97	3.51	45.45	45.45	17.96	100.00	0.00	98.17	47.73	95.38	56.27
F110B20100519B	05/19/2010	Spring 2010	Kelly Branch	KEL	Test	8	5	6.80	78.64	0.00	0.97	79.61	0.99	36.36	45.45	11.09	100.00	0.00	99.03	29.46	100.00	52.67
F110B20100519C	05/19/2010	Spring 2010	Kelly Branch UT	KUT	Test	10	5	27.27	29.09	0.00	14.55	52.73	3.69	45.45	45.45	44.49	81.72	0.00	85.45	68.31	92.82	57.96
F110B20100520F	05/20/2010	Spring 2010	Laurel Branch	LAB	Test	14	9	36.45	43.93	1.87	2.80	67.29	2.85	63.64	81.82	59.46	100.00	3.62	97.20	47.27	100.00	69.13
F110B20100519D	05/19/2010	Spring 2010	Laurel Fork	LAU	Test	19	15	29.00	24.00	9.00	27.00	39.00	3.94	86.36	100.00	47.31	67.42	17.44	73.00	88.15	89.12	71.10
F110B20100521F	05/21/2010	Spring 2010	Middle Camp Branch	MCB	Ref	18	13	10.62	42.48	23.01	23.01	55.75	2.88	81.82	100.00	17.32	100.00	44.59	76.99	63.94	100.00	73.08
F110B20100519A	05/19/2010	Spring 2010	Mill Branch Left Fork	MIL	Test	9	4	8.85	68.14	0.00	12.39	69.03	1.86	40.91	36.36	14.44	100.00	0.00	87.61	44.76	100.00	53.01
F110B20100519E	05/19/2010	Spring 2010	Powell River	POW	Test	16	9	25.66	43.36	12.39	1.77	47.79	2.88	72.73	81.82	41.87	100.00	24.01	98.23	75.45	100.00	74.26
F110B20100524D	05/24/2010	Spring 2010	Race Fork UT	RAC	Test	9	6	0.99	76.24	0.99	1.98	79.21	1.60	40.91	54.55	1.62	100.00	1.92	98.02	30.05	100.00	53.38
F110B20100520B	05/20/2010	Spring 2010	Richey Branch	RIC	Test	13	8	3.45	52.59	1.72	17.24	55.17	3.01	59.09	72.73	5.63	100.00	3.34	82.76	64.78	100.00	61.04
F110B20100520C	05/20/2010	Spring 2010	Richey Branch UT	RUT	Test	15	8	7.22	62.89	7.22	7.22	54.64	2.04	68.18	72.73	11.77	100.00	13.99	92.78	65.55	100.00	65.63
F110B20100526B	05/26/2010	Spring 2010	Roll Pone Branch	ROL	Test	18	13	7.00	66.00	4.00	9.00	60.00	2.08	81.82	100.00	11.42	100.00	7.75	91.00	57.80	100.00	68.72
F110B20100524E	05/24/2010	Spring 2010	Spring Branch	SPR	Test	17	11	11.11	58.59	7.07	4.04	46.46	2.43	77.27	100.00	18.13	100.00	13.70	95.96	77.36	100.00	72.80
F110B20100524A	05/24/2010	Spring 2010	Spruce Pine Creek	SPC	Test	15	9	21.00	50.00	6.00	12.00	56.00	2.49	68.18	81.82	34.26	100.00	11.63	88.00	63.58	100.00	68.43